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Examples in Xopt: Flexible Optimization of Arbitrary Problems

Many optimization algorithms
- Genetic algorithms (NSGA-II, etc.)
- Nelder-Mead Simplex
- Bayesian optimization

Text file for 
problem
 setup

Python interface

https://christophermayes.github.io/Xopt/ https://christophermayes.github.io/Xopt/algorithms/ 

Will have 
links to 

algorithm 
examples in 

Xopt

https://christophermayes.github.io/Xopt/
https://christophermayes.github.io/Xopt/algorithms/


Optimization Considerations

Problem complexity
how difficult is the problem to solve?

Evaluation cost
how expensive is it to evaluate 
objectives/constraints?

Optimizer cost
how expensive is it to make decisions?

Overhead
how expensive is it to prepare for optimization?



Bayesian Optimization

Create a computational 
model of the system

Pick the point that 
maximizes value

Determine the value of 
potential future 
measurements

Xopt example

Used broadly in black-box optimization of unknown, noisy functions

https://christophermayes.github.io/Xopt/examples/single_objective_bayes_opt/bo_tutorial/


Gaussian Process Modeling

Gaussian processes (GPs)

- Standard model of choice for basic Bayesian Optimization
- Gains information from a small number of data points à sample-efficient
- Accounts for noise and uncertainty à ideal for accelerators + global optimization



𝑓 𝑥) = 𝑓(𝑥; 𝜃

Parametric modeling Non-Parametric modeling

𝑓 = {𝜃! 𝑥! , 𝜃" 𝑥" , … , 𝜃#(𝑥#)}

e.g. Neural Networks e.g. Gaussian Processes
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The kernel specifies function value covariances at two points 𝑥, 𝑥! 
à controls the function behavior
à parameterized by hyperparameters that are automatically fit to the data

𝑘 𝑥, 𝑥$ = 𝝈𝒇𝟐 exp −
1
2𝒍' 𝑥 − 𝑥$ ' + 𝝈('𝛿))$

Kernel amplitude

Kernel length scale Noise

Radial Basis Function:

Rasmussen and Williams

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjN1bnk9dSAAxX3CTQIHT3tBhsQFnoECAkQAQ&url=https%3A%2F%2Fgaussianprocess.org%2Fgpml%2Fchapters%2FRW.pdf&usg=AOvVaw1ICpK72-OSnbUxfuEmRkiE&opi=89978449
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Build probabilistic model 
à e.g. Gaussian Process model

Iteratively refit model while sampling new 
points

Process of Bayesian Optimization



Build probabilistic model 
à e.g. Gaussian Process model

Iteratively refit model while sampling new 
points

Use model predictions and uncertainty to 
guide search for optimum while sampling
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Build probabilistic model 
à e.g. Gaussian Process model

Iteratively refit model while sampling new 
points

Use model predictions and uncertainty to 
guide search for optimum while sampling

Decide tradeoff between exploring new 
areas and exploiting learned info to reach 
optimum 

à “exploration, exploitation tradeoff”
à codified in the acquisition function

Courtesy 
Johannes 
Kirschner 
(ETH 
Zurich)

y 
(o

bj
ec

tiv
e)

x (variable)

Process of Bayesian Optimization



Courtesy Johannes 
Kirschner (ETH 
Zurich)

y 
(o

bj
ec

tiv
e)

x (variable)

Build probabilistic model 
à e.g. Gaussian Process model

Iteratively refit model while sampling new 
points

Use model predictions and uncertainty to 
guide search for optimum while sampling

Decide tradeoff between exploring new 
areas and exploiting learned info to reach 
optimum 

à “exploration, exploitation tradeoff”
à codified in the acquisition function

Process of Bayesian Optimization



Courtesy Johannes 
Kirschner (ETH 
Zurich)

y 
(o

bj
ec

tiv
e)

x (variable)

Build probabilistic model 
à e.g. Gaussian Process model

Iteratively refit model while sampling new 
points

Use model predictions and uncertainty to 
guide search for optimum while sampling

Decide tradeoff between exploring new 
areas and exploiting learned info to reach 
optimum 

à “exploration, exploitation tradeoff”
à codified in the acquisition function

Process of Bayesian Optimization



y 
(o

bj
ec

tiv
e)

x (variable)

Courtesy Johannes 
Kirschner (ETH 
Zurich)

Build probabilistic model 
à e.g. Gaussian Process model

Iteratively refit model while sampling new 
points

Use model predictions and uncertainty to 
guide search for optimum while sampling

Decide tradeoff between exploring new 
areas and exploiting learned info to reach 
optimum 

à “exploration, exploitation tradeoff”
à codified in the acquisition function

Process of Bayesian Optimization



exploit à may miss better optima explore à uniform sampling

Figs courtesy 
Johannes Kirschner 
(ETH Zurich)

exploration-exploitation tradeoff at the extremes

Acquisition function hyperparameter called beta or kappa controls this tradeoff



Single Objective Optimization

EI 𝒙 = 𝔼[max(𝑓 𝒙 − 𝑓∗)]

- The model accuracy improves in the region of interest
- Initially model uncertainty is high at domain boundaries, BO likes to sample those
- Helpful if the acquisition function is differentiable à use gradient descent to optimize

𝒙+," = argmax𝒙EI(𝒙)
(Assumes maximization)
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Example: LCLS-II Injector Emittance

• BO to optimize several 
magnets (SOL1, SOL2, 
SQ1, SQ2, CQ1, CQ2)

• Upper confidence bound 
acquisition function



Incorporating Physics-Informed Priors

19

Can use a prior based on expected physics
• BO at LCLSà tune quadrupoles maximize FEL pulse energy
• Make GP kernel informed by how quads correlate with FEL
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Measured FEL: quads 620 
and 640 are adjacent so 
must be anti-correlated

Incorporating Physics-Informed Priors
Can use a prior based on expected physics
• BO at LCLSà tune quadrupoles maximize FEL pulse energy
• Make GP kernel informed by how quads correlate with FEL
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ground truth

widths = 2
ρ = 0.7

regression on the same samples 

ρ = 0.7ρ = 0

Measured FEL: quads 620 
and 640 are adjacent so 
must be anti-correlated

Incorporating Physics-Informed Priors
Can use a prior based on expected physics
• BO at LCLSà tune quadrupoles maximize FEL pulse energy
• Make GP kernel informed by how quads correlate with FEL
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ground truth

widths = 2
ρ = 0.7

ρ = 0.7ρ = 0

regression on the same samples 

Incorporating Physics-Informed Priors
Can use a prior based on expected physics
• BO at LCLSà tune quadrupoles maximize FEL pulse energy
• Make GP kernel informed by how quads correlate with FEL
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à design Gaussian Process kernel from expected correlations between inputs (e.g. quads)

à take the Hessian of model at expected optimum to get the correlations  

vertical emittance
 tuning @SPEAR3

No measured data needed ahead of 
time, just a physics model

J. Duris et al., PRL, 2020 
A. Hanuka, et al., PRAB, 2021

FEL tuning @LCLS

Including correlation between inputs enables increased sample-efficiency and results in faster optimization
à kernel-from-Hessian enables easy computation of correlations even in high dimension

Incorporating Physics-Informed Priors



Higher-precision optimization possible when including hysteresis effects in model

Differentiable Physics + GP 
Modeling

 

R. Roussel, et al., PRL, 2022

BO on sys. 
with hysteresis

Hybrid BO on sys.
 with hysteresis

Regular GP
     Model

Hysteresis + GP
              Model

Promising example showing the power of differentiable physics and ML models to enable high-precision characterization and control with minimal data. 

Magnetic hysteresis has been a major 
impediment to high-precision tuning à 
historically required standardization of magnets

New modeling approach combining classical 
Preisach model and a Gaussian Process

Joint modeling of hysteresis and beam propagation is more accurate and enables 
in-situ hysteresis characterization



Combining GP Modeling with Neural Networks

We can specify a prior mean 
function to bias the model where 
data does not exist

Model 
prediction 
returns to 
prior

NN prior improves optimization 
performance even with limited model 
accuracy à don’t need a perfect model

LCLS injector surrogate
Xopt example

NeurIPS proceeding: https://arxiv.org/abs/2211.09028

https://christophermayes.github.io/Xopt/examples/single_objective_bayes_opt/custom_model/
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Multi-Objective Optimization

Determine the optimal trade-off between objectives: the Pareto front

Roussel et. al. PRAB 2021Xopt example

https://christophermayes.github.io/Xopt/examples/multi_objective_bayes_opt/mobo/


Example: Ideal Tradeoffs for LCLS Injector

Objectives:
- Minimize longitudinal bunch length
- Minimize vertical bunch size

Tuning variables:
- Solenoid strength
- Skew quad strength
- Normal quad strength

Started with random sampling of input 
space, then ran Multi-Objective Bayesian 
Optimization for 25 iterations

28

LCLS Injector



Autonomous Characterization – Bayesian Exploration

Roussel et. Al. Nat. Comm. 2021Xopt example

https://christophermayes.github.io/Xopt/examples/bayes_exp/bayesian_exploration/
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Incorporating Constraints

Example: We want to ensure during measurements that the beam stays within a ROI.
• Define a smoothly varying penalty function to act as a constraint

Define a circular ROI
Measure maximum distance from the 
ROI center to bounding box corners.

𝑟./0

𝑟1
𝑝 = 𝑟1 − 𝑟./0

Constraint:
𝑝 ≤ 0 

Other examples: Beam losses, dark current production, emittance, etc.



Incorporating Constraints
Weight the acquisition function by the probability that constraints are satisfied
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E𝛼 𝑥 → 𝛼(𝑥)H
2

𝑝 𝑔2 𝑥 ≤ ℎ2 	

𝑔 𝑥 ≤ 0

Gardner et. al. ICML 2014

2D Example



Weight the acquisition 
function by travel distance à 
better than hard limits
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Proximal Biasing

Poor optimization 
behavior for 
experimental beamlines

E𝛼 𝑥 → 𝛼 𝑥 exp −
𝑥 − 𝑥! '

2𝜎' 	

Roussel et. Al. Nat. Comm. 2021
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Trust Region Bayesian Optimization (TuRBO)

• Bayesian optimization tends to 
prioritize exploration in order to find 
global optima

• Restrict search region to local area 
around best observation

• Expand / contract “trust” region 
based on algorithm successes / 
failures on-the-fly

• Helps find local extrema in high 
dimensional optimization problems

Xopt example

https://christophermayes.github.io/Xopt/examples/single_objective_bayes_opt/turbo_tutorial/


Sextupole tuning for IP at FACET-II

Longitudinal phase 
space tuning on LCLS

Hanuka et. al. PRAB , 2021

Higher-precision optimization 
possible when including hysteresis 

effects in model

BO on sys. with 
hysteresis

Hybrid BO 
on sys. with 
hysteresis

Duris et. al. PRL , 2020

Roussel et. al. PRL , 2022

Roussel et. al. PRAB , 2021

FEL pulse energy tuning at LCLS Loss rate tuning at SPEAR3

Multi-objective 
Bayesian Optimization

target

Many successes 
with Bayesian 

Optimization in 
accelerators

 (+ improvements)

Algorithms being implemented/distributed in Xopt: https://github.com/ChristopherMayes/Xopt 

https://github.com/ChristopherMayes/Xopt








Basic Framing of an RL Problem





“deep RL” 
uses 

neural 
networks 





E. Cropp et al., in preparation

Hand-tuning in seconds vs. tens of minutes
 

Boost in convergence speed for other algorithms

Can work even under distribution shift

• Round-to-flat beam transforms are challenging to 
optimize à 2019 study explored ability of a learned 
model to help

• Trained neural network  model to predict fits to beam 
image, based on archived data

• Tested online multi-objective optimization over model 
(3 quad settings) given present readings of other inputs

• Used as warm start for other optimizers

Recall Example from Accelerator Lecture



• Used learned NN model as a fast-
executing training environment for RL 
control policy (Deep Deterministic Policy 
Gradients)

• Then tested on accelerator with/without 
retraining the policy

• In principle capable of taking both larger 
jumps and fine-tuning

• Had fastest convergence out of 
algorithms tested once trained, but 
required substantial overhead in training

Example: RL on the same system







Existing Feedforward/PID Controller

Similar techniques can be applied to cryogenic systems

Model Predictive Controller

Applied model predictive control with a neural network model trained on 
measured data: ~ 5x faster settling time + no large overshoot

Gun Water
 System 
Layout

Resonant frequency controlled via temperature 
Long transport delays and thermal responses
Two controllable variables: heater power + flow valve

Oscillations are largely due to the transport delays and water recirculation, not PID gains

Edelen, IPAC’15 ; Edelen, TNS, 2016

Example from FAST RF gun



Choice largely depends on need:
• RL (and especially “deep” RL) is well-suited for continuous control, especially when a fast simulator exists for training
• BO is well-suited for optimization of new problems where there is little existing information
• For more detail on RL, see Auralee’s USPAS lecture: https://slaclab.github.io/USPAS_ML/slides/Day9_Reinforcement.pdf  

Both BO and RL have been used for online optimization/control of particle accelerators, with good success

https://slaclab.github.io/USPAS_ML/slides/Day9_Reinforcement.pdf


Summary

Bayesian optimization encompasses a broad set of flexible tools that are well-suited to solving 
complicated black-box optimization problems for both operation of instruments and design, 
particularly in setups where little to no previous information or data is available

Many improvements make Bayesian optimization more sample-efficient and suited to online 
optimization of experiment setups (e.g. smoother sampling, constraints, physics-informed priors)

Reinforcement Learning came out of a different setting (continuous control, robotics, etc) and is 
generally well-suited for time-dependent continuous control à in accelerators, it is being 
examined for both optimization and continuous control

For more details on BO/RL in the context of optimizing/controlling scientific instruments see:
• USPAS course on Optimization and ML for Particle Accelerators: 

https://slaclab.github.io/USPAS_ML/ 
• Many more RL pedagogy  details and examples in:  

https://slaclab.github.io/USPAS_ML/slides/Day9_Reinforcement.pdf  

https://slaclab.github.io/USPAS_ML/
https://slaclab.github.io/USPAS_ML/slides/Day9_Reinforcement.pdf

