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ML-Assisted Optimization and Characterization

Large, nonlinear, and sometimes noisy search spaces for
accelerators and detectors 2 need to find optima and
examine trade-offs with limited budget (computational
resources, machine time)

ML-assisted optimization leverages learned representations
to improve sample efficiency. Some methods also include
uncertainty estimation to inform where to sample next
(avoid undesirable regions, target information-rich areas).

Similar set of tools for operation and design (with a few
differences: parallel vs. serial acquisition, need for uncertainty-
aware/safe optimization)

r

Bayesian optimization / active learning / reinforcement learning
- All learn iteratively via online interaction with the system

next point to search
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Output constraints learned on-the-fly
R. Roussel et al., arXiv:2106.09202
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R. Roussel et al., arXiv:2010.09824
A. Edelen et al., arXiv:1903.07759
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Examples in Xopt: Flexible Optimization of Arbitrary Problems

Will have
I i n ks to max_evaluations: 6400 t

generator:

algorithm =l

population_size:
population_file: test.csv

-
examples in ot gt
evaluator:
Xopt function: xopt.resources.test_functions.tnk.evaluate_TNK

function_kwargs:
raise_probability: .1 @ ge———————————

Text file for

# create Xopt object. anishles:
x1: [0, 3.14159]

X = Xopt(YAML) x2: [0, 3.14159] prOblem

objectives: {yl: MINIMIZE, y2: MINIMIZE}
# take 10 steps and view data constraints:
for _ in range(10): c1: [GREATER_THAN, @] Setup

X.step() | c2: [LESS_THAN, 0.5]
linked_variables: {x9: x1}

constants: {a: dummy_constant}

Badger GUI interface

X.data

Many optimization algorithms

- Genetic algorithms (NSGA-II, etc.)
- Nelder-Mead Simplex

- Bayesian optimization

https://christophermayes.qgithub.io/Xopt/ https://christophermayes.github.io/Xopt/algorithms/ 3

Python interface



https://christophermayes.github.io/Xopt/
https://christophermayes.github.io/Xopt/algorithms/

Optimization Considerations
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Bayesian Optimization

Determine the value of

Create a computational potential future Pick the point that
model of the system measurements maximizes value
Test Point
Surrogate Model > Acquisition Function e Acq. Optimization
* Observation Data

Used broadly in black-box optimization of unknown, noisy functions

Xopt example


https://christophermayes.github.io/Xopt/examples/single_objective_bayes_opt/bo_tutorial/

Gaussian Process Modeling

Gaussian processes (GPs)

Test Point

Surrogate Model — Acquisition Function = Acq. Optimization e J 0 %

* Observation Data

- Standard model of choice for basic Bayesian Optimization
- Gains information from a small number of data points - sample-efficient
- Accounts for noise and uncertainty - ideal for accelerators + global optimization



Parametric modeling

« RawData
——— 3rd Order Polynomial Fit
—— 5th Order Polynomial Fit
9th Order Polynomial Fit

N
X &
(0]

f(x) = f(x;6)

e.g. Neural Networks

Non-Parametric modeling

f =1{00(x0),01(x1), ..., O (xn)}

e.g. Gaussian Processes



y (objective)

Gaussian Processes
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The kernel specifies function value covariances at two points x, x’
—> controls the function behavior
- parameterized by hyperparameters that are automatically fit to the data

Radial Basis Function'
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https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjN1bnk9dSAAxX3CTQIHT3tBhsQFnoECAkQAQ&url=https%3A%2F%2Fgaussianprocess.org%2Fgpml%2Fchapters%2FRW.pdf&usg=AOvVaw1ICpK72-OSnbUxfuEmRkiE&opi=89978449

Process of Bayesian Optimization
Build probabilistic model
- e.g. Gaussian Process model

Iteratively refit model while sampling new
points

y (objective)
o N

X (variable)
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Process of Bayesian Optimization
Build probabilistic model
- e.g. Gaussian Process model

Iteratively refit model while sampling new
points

Use model predictions and uncertainty to
guide search for optimum while sampling

y (objective)
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Process of Bayesian Optimization

Build probabilistic model
- e.g. Gaussian Process model

Iteratively refit model while sampling new 1
points 5]
") 5 Courtesy
N . E Johannes
Use model predictions and uncertainty to g 1 ?Zrﬁ;:‘lhner
guide search for optimum while sampling 8 o Zurich)
>’_1. —— GP mean
1 : — UCB isiti
Decide tradeoff between exploring new L "
areas and exploiting learned info to reach _|Lx datm
Optimum —20 -15 -10 -05 00 05 10 15 20
X (variable)

-> “exploration, exploitation tradeoff”
- codified in the acquisition function



Process of Bayesian Optimization

Build probabilistic model
- e.g. Gaussian Process model Bayesian Optimization Example

® evaluations

Iteratively refit model while sampling new m
. > true
pomts © function
% . acqui_sition
Use model predictions and uncertainty to % function
guide search for optimum while sampling -== prediction
2x std. dev.

Decide tradeoff pgtween expllorlng new Courtesy Johannes
areas and exploiting learned info to reach -04 -02 00 02 04 Kirschner (ETH
Optimum x (variable) Zurich)

-> “exploration, exploitation tradeoff”
- codified in the acquisition function



Process of Bayesian Optimization

Build probabilistic model

- e.g. Gaussian Process model Bayesian Optimization Example
3_
Iteratively refit model while sampling new ™ ® evaluations
. > true
pomts k3] function
'_GQ—J- acquisition
Use model predictions and uncertainty to % D
. . . . mean
guide search for optimum while sampling === prediction
2x std. dev.
Decide tradeoff pgtween expllorlng new ‘ Courtesy Johannes
areas and exploiting learned info to reach -0.4 -02 00 02 04 Kirschner (ETH
Zurich)

optimum X (variable)

-> “exploration, exploitation tradeoff”
- codified in the acquisition function



Process of Bayesian Optimization

Build probabilistic model

- e.g. Gaussian Process model Bayesian Optimization Example
3.
Iteratively refit model while sampling new = ol $  elaliations
. 2 2 true
points G function
-_?3—’- acquisition
.y . — f i
Use model predictions and uncertainty to % ;2;‘“
guide search for optimum while sampling ~~7 prediction
2x std. dev.
Decide tradeoff between exploring new ‘ .
v . - T y T T ourtesy Johannes
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-> “exploration, exploitation tradeoff”
- codified in the acquisition function



exploration-exploitation tradeoff at the extremes

Figs courtesy
Johannes Kirschner

(ETH Zurich)
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Acquisition function hyperparameter called beta or kappa controls this tradeoff



Single Objective Optimization

"

El(x) = E[max(f(x) — )] | .
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(Assumes maximization)
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- The model accuracy improves in the region of interest
- Initially model uncertainty is high at domain boundaries, BO likes to sample those
- Helpful if the acquisition function is differentiable - use gradient descent to optimize



Example: LCLS-ll Injector Emittance
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gun

Incorporating Physics-Informed Priors

Can use a prior based on expected physics
« BO at LCLS- tune quadrupoles maximize FEL pulse energy
* Make GP kernel informed by how quads correlate with FEL

L1X

L1Sl
BC

L2-linac

1250 Mev B

@

L3-linac

243GeV  14GeV

XTCAV
\

undulator

19



gun L1X

Incorporating Physics-Informed Priors

L1 Sl L2-linac L3-linac

BC @

1soMev B243Gev  14Gev

Can use a prior based on expected physics
« BO at LCLS- tune quadrupoles maximize FEL pulse energy
+ Make GP kernel informed by how quads correlate with FEL
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L1X

Incorporating Physics-Informed Priors

l , , XTCAV
L1S L2-linac L3-linac \

BC @

1soMev B243Gev  14Gev  undulator

Can use a prior based on expected physics
« BO at LCLS- tune quadrupoles maximize FEL pulse energy
+ Make GP kernel informed by how quads correlate with FEL

population mean 10

09
08
07

— ground truth
DET:FEE1:241:ENRC 3315 MeV 500 eV

20.0 s
135
195 dth — 2 % 05
1.20 Wi S - _ 04
03
9.0 —_ _
! 105 p - O . 7 b
: 0.90 01
— 00
-8 -6 -4 -2 [ 2 4 6
18.0 075 Xl
GP estimate GP estimate
1 0.60 105 105
O o
0.45 090 I 1 090
= 075 . 075
0.30 |
16.5 - 1 0.60 0.60
" =
0.15 % = 045 045
g
16.0 = 030 _ 030
|

® & AN o N s oo @

QUAD:LTU1:640:BCTRL

-
S
o

=22.0 -21.5 -21.0 -20.5 -20.0 -19.5 -19.0 -18.5 -18.0

QUAD:LTU1:620:BCTRL 015

0.00

-0.15

Measured FEL: quads 620 R R R R S NE R
and 640 are adjacent so
must be anti-correlated

[
@ o & N o N B o

[ |
@ o A& N o N B o ©

regression on the same samples



Incorporating Physics-Informed Priors

Can use a prior based on expected physics

BO at LCLS—-> tune quadrupoles maximize FEL pulse energy
Make GP kernel informed by how quads correlate with FEL

X-ray pulse energy (mj)
N

4 LTU matching quads

—— simplex

ap
—— gp w/ correlations
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. . . J. Duris et al., PRL, 2020
Incorporating Physics-Informed Priors A. Hanuka, et al., PRAB, 2021

- design Gaussian Process kernel from expected correlations between inputs (e.g. quads)

1.0 10 L I Uncorrelated Kernel
0.8 @ Correlated Kernel
08 2 gun L1X
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z, Dimensionality
z T
(a) Ground truth (b) Isotropic kernel (c) Correlated kernel

- take the Hessian of model at expected optimum to get the correlations

o
n
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vertical emittance
tuning @SPEAR3
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—
o
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(=]
o

0.5 H ‘l— GP w/ physics basis-function
0.5 V== G,P w/ data ML-Il
- - No measured data needed ahead of
-10 0 10 20 0.0 y . ; . . .
iS5 ST 0 50 Slt(;% 150 200 time, just a physics model

Including correlation between inputs enables increased sample-efficiency and results in faster optimization

- kernel-from-Hessian enables easy computation of correlations even in high dimension



. . . - Cycel Regular GP
Differentiable Physics + GP I Model
. 4 Cycle 3
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Current (A) Current (A)
Applied magnetic field Joint modeling of hysteresis and beam propagation is more accurate and enables
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—— GP, H¢=0
+ Hysteresis model L] = GP H.—0.1 BO on sys.
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R. Roussel, et al., PRL, 2022 Higher-precision optimization possible when including hysteresis effects in model

Promising example showing the power of differentiable physics and ML models to enable high-precision characterization and control with minimal data.



Combining GP Modeling with Neural Networks
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We can specify a prior mean : | _
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LCLS injector surrogate

Xopt example
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NeurlPS proceeding: https://arxiv.org/abs/2211.09028


https://christophermayes.github.io/Xopt/examples/single_objective_bayes_opt/custom_model/

Efficient Emittance Optimization with Partial Measurements
* Instead of tuning on costly emittance measurements directly: learn a fast-executing model online for

beam size while optimizing - learn on direct observables (e.g. beam size); do inferred “measurements” (e.g. emittance)

* New algorithmic paradigm leveraging “Bayesian Algorithm Execution” (BAX) for 20x speedup in tuning

(a)
Iteration 10
Select virtual | — Sample beam X .
Update GP model —» e e e ! 225 - Cmitlance 3 ~—— BAX Emitt
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e fiecats unh.l OPt].l’naI < 100 \ 4 ‘ o 1754 % ™ "Ak(%/'/\AVWA‘)J\'\{'A,.M-Jv’\-\n\v/'«“"\/VW/J_‘\VM, =3
Query machine injector config (with lowest = I\ \ ! / S & 1.00 - -
( )r(y ive) emittance) is found = \ \\ / II g 150+ 0 100 200 300
EXpensive, s 80 N ,’ { g Number of Beam Size Function Queries
[sa) 30 % = . .
© by-r 1.25 simulation
—— Model » & | s —— o I
G % == 60] X-Plane Lo Convergence of beam size prediction error
i d S — — g = Y - u v G . . . . . . .
;e;esi‘l;\l;‘:z:;ﬁ emittance § \ P GQM dmpolc‘lsm gth (kG? 0 250 500 750 1000 1250 gives practical indicator of optimization
ek Number of Beam Size Function Queries . §
aboutoptimal % Q“adm: = — Q convergence (no need to do direct emittance
[Sg‘gfcggf‘;g{lgs, model is learned measurement until the end)
\ it A Optimization of emittance on model posterior 200
on-th e-ﬂy 9+t Hr+—7— 7 e Hand-Tuned Emittance
—}— Observed Emittance
S-Band RF i Iteration 90 —’gs 8 =it Up;_)er Bound on Optimal | 600 @ ’ 1
GRF . lG‘“‘. ” Accelerator M";td““% ire g 1 S as Found equivalent quality to hand-
un Solenoi Sections Quadrupoles Posterior Sample z 7 | eam Size Error R 5 g 5 i ¥
120 Y g | ‘ §E  tuning in about 70 iterations (estimate
e == = Posterior Mean = t m % % B
™ g i % 6! 40087 2 this would take a few minutes with
) o e ,E o5 g5 == Ground Truth % ‘ q g X _ X
=100 £, | experiment kR computationally optimized routine)
& £ 200 £
Y : a I i T 205 |
: : g AN\JO
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(not drawn to scale) " " 60| X-Plane Number of Beam Size Function Queries https://arxiv.org/abs/2209.04587

Paradigm shift in how tuning on indirectly computed beam measurements (such as emittance) is done, with 20x improvement over
standard method for emittance tuning. 2> Now working to integrate into operations.

- Also now working to incorporate more informative global models /priors rather than learning the model from scratch each time.



Multi-Objective Optimization

Determine the optimal trade-off between objectives: the Pareto front
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Xopt example

Roussel et. al. PRAB 2021
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https://christophermayes.github.io/Xopt/examples/multi_objective_bayes_opt/mobo/

Example: Ideal Tradeoffs for LCLS Injector

Objectives:
- Minimize longitudinal bunch length
- Minimize vertical bunch size

Tuning variables:

- Solenoid strength

- Skew quad strength

- Normal quad strength

Started with random sampling of input
space, then ran Multi-Objective Bayesian
Optimization for 25 iterations
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Autonomous Characterization — Bayesian Exploration

ol AL
L | Y g \ M4
If the function changes more rapidly along
one axis, sample more points along that a(x) = o(x)
axis!
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Equal lengthscales
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2
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Roussel et. Al. Nat. Comm. 2021
Xopt example



https://christophermayes.github.io/Xopt/examples/bayes_exp/bayesian_exploration/

Incorporating Constraints

ol A
LS | T g \
Example: We want to ensure during measurements that the beam stays within a ROI.
* Define a smoothly varying penalty function to act as a constraint
Measure maximum distance from the
Define a circular ROI ROI center to bounding box corners.
Constraint:

p<0

Other examples: Beam losses, dark current production, emittance, etc.

30



Incorporating Constraints

Weight the acquisition function by the probability that constraints are satisfied

Ground truth

a() ~ a@ | [plai < ni

objective constraint Region ok Region not ok
056 S <0 | . 2D Example
0.4 I 1
" 0.0+ i . -
—0.2 A
—0.4 A
010 0j2 Oj4 016 0j8 1j0 OjO Oj2 014 0j6 Oj8 110
X X X Gardner et. al. ICML 2014
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Proximal Biasing

"

Poor optimization

behavior for @, 0 o,
experimental beamlines —e— Al
1.754 ® Valid 1.75
@ |Initial
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1.25 N\ 1.25
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0.25 4 ‘ 0.25 1
4
0.00 : S , 0.00
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Roussel et. Al. Nat. Comm. 2021
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Efficient Characterization of FACET-Il Injector

O\  Setting changes on 10 variables (solenoid, bucking coil, corrector quads and matching quads)

images

Automatic Exploration g v -
(constrained to useful values [« | ° .
. 3 ® X-y emit,
of emittance and match) : ; 3 g . . rrcrEEh
/ g g E @ :% 8 % g 20 , and
3 3 3 2 : B beam

A 4

(S
I+
ca

Models of Injector FACET-Il Injector

[ Comprehensive ML ]

transverse phase space

0 =0 %0
o 0 100 150 00 20 o L 100 150 20 =0 0 0 100 150 20 20

[] ° 0

%0 L 0

100 100 100

20 0 20

20 = 0
o 0 100 150 0 20 ’ » bad e e =8 0 E) 100 150 20 20

X

* Used Bayesian Exploration for efficient high-dimensional characterization (10
variables) of emittance and match at 700pC: 2 hrs for 10 variables compared
to 5 hrs for 4 variables with N-D parameter scan

* Data was used to train neural network model of injector response predicting x-
y beam images. GP ML model from exploration predicts emittance and match.

* Example of integrated cycle between characterization, modeling, and
optimization = now want to extend to larger system sections and new setups

Predicted Measured

Use of Bayesian exploration to generate training data was sample-efficient, reduced burden of data cleaning, and resulted in a well-

balanced distribution for the training data set over the input space. ML models were immediately useful for optimization.



Trust Region Bayesian Optimization (TuURBO)

SLAS
. Bay e Si an optlmlzatl on ten dS tO n_successes: 0, fl_,l’.ft 0.125, region_width: 0.79, best_value: -1.022
prioritize exploration in order to find i — #\/ B
global optima e S-S |
* Restrict search region to local area N
around best observation " N\/\[—
- Expand / contract “trust” region o o
based on algorithm SuGCesses / /A‘
failures on-the-fly iR

» Helps find local extrema in high

dimensional optimization problems * \/ﬁ

Xopt example



https://christophermayes.github.io/Xopt/examples/single_objective_bayes_opt/turbo_tutorial/

FEL pulse energy tuning at LCLS Loss rate tuning at SPEAR3 Sextupole tuning for IP at FACET-II

)
N
=)

-
wn

Many successes
with Bayesian
Optimization in

n
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Beam Size (um)
=
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X-ray pulse energy (m)
—
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Beam loss rate [mA/min]
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0.5 0.5 E =— GP w/ physics basis-function 0
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(+ improvements) T 2o S R
Duris et. al. PRL . 2020 Hanuka et. al. PRAB, 2021
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oussel et. al. PRAB , 2021 Algorithms being implemented/distributed in Xopt: https:/github. com/Christopher/\@&



https://github.com/ChristopherMayes/Xopt

Deep Reinforcement Learning

* Control policy maps states to actions

new system state, reward . ‘
4 ’ * Policy is learned over time based on performance

(quantified by the “reward”)

Neural Network

(control policy) o * Neural network enables use of diverse signal types
(e.g. scalars, images, time series)

* Often learns a system model simultaneously (map
states + actions to expected reward)

 Gu,etal, 2016

Appeal for accelerator control:

* Suitable for large, nonlinear systems

* Exploit machine-wide sensitivities + directly use target beam
. . _— . parameters or images
complicated diagnostic information

* Leverage information from past observations Control
Policy

e Transfer between similar designs
present machine

X new machine
settings

settings Spectra
Gas detector
XTCA\Y

*  Well-established in other fields (e.g. robotic control)

. gun L1X
-> but accelerators have unique challenges

VCC L1 Sl L2-linac L3-linac

BClosoMev BC243Gev  14Gev  undulator

Deep RL is well-suited to accelerator control, but dedicated R&D is needed to bring it to full fruition




Can treat many high-level accelerator tuning problems as either time-
dependent or time-independent...

gun L1X
laser l _ , XTCAV
profile L1S L2-linac L3-linac \
BC1250 MeV B2 4.3 GeV 14 GeV undulator
N
T (»C’/ w‘-ﬂ )
QL‘.
//0—\\\_/
“search for optimal settings”
S 3(_)\). /gc) S
N»//—a “game to take actions that maximize
Y —Dhae performance over time”

as machine drifts over time = reoptimize, or keep playing



Some problems need to be treated as time-dependent...

RF electron gun at the Fermilab Accelerator Radio frequency quadrupole (RFQ) for the
Science and Technology (FAST) facility PIP-II Injector Test

9IqDIS *d ‘02044

I |LCW supply

cooling
skid

LCW return | t warm return
cool supply r

LCW supply

O
TCAV X
coupling through Cu

[awiars [ 03044



Basic Framing of an RL Problem

State (St+1), Reward (Ry,; )

Initial : =i] @ Riiy Riio Ri.s @ A
S —+ ‘ A y. v Arn Y. v
State "' : Action (A;) ; kel b 1+3

RL agent interacts with an environment over time = goal is to maximize total returned reward

State — system information at present time

Action —a change the agent can make to the environment
Reward — scalar return from the environment at present time I A
Episode — sequences of (statel = actionl - state2 + reward2); ends on some terminal condition

Agent acts according to a policy (T) — determines actions to take based on observed state
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Bayesian Optimization

RBF
Model Uncertainty Posterior Samples Kernel Function

7.5
5.0
2.5
00{ | |

=-2.5 4\

y (objective)

=50

x (variable)

® evaluations
true
function
acquisition
function
mean
prediction
2x std. dev.

y (objective)

264 62 00 02 o4 lgscourtesy
Johannes
x (variable) Kirschner, ETH
Select sample x = observe objective = refit surrogate model
- use model predictions and uncertainty to choose next point
according to an acquisition functions

Reinforcement Learning

system state, reward £,

[EAi

=2
- e gf‘

Agent

actions

Many ways to construct agent that learns from reward:

A ﬁgy; = N o
W lemrasd @o\"-C VBH
b VU 3
S » ‘7 % - L
N |
N va\nas (andven

Observe state = take action according to a control policy
- observe reward 2 update policy or value function

J

/.
Analogous concepts, different terminology and usually different setting:
objective - reward

surrogate model = value function
acquisition function = policy
acquire new sample - take an action
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Bayesian Optimization Reinforcement Learning
RBF
_ Model Uncertainty Posterior Samples Kernel Function system state, reward (
2
8
oy €
C Agent
> - actions S
-4 2 0 2 4 (3\--:_ g c
x (variable)
Many ways to construct agent that learns from reward:
3
- ® evaluations N
o t = a(N'D
< — Skale 9 B0 %
Q2 ___ acquisition & n
8 function Mearacd @o\"-c “
ezl mean
> ~77 prediction
2x std. dev. .
S e Sixie. Tlis = B
04 -02 00 02 04 Figs courtesy a NV oAl w f
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x (variable) Kirschner, ETH M Va\nee anvon
Select sample x = observe objective = refit surrogate model - st J il
- . . serve state = take action according to a control polic
- use model predictions and uncertainty to choose next point _ g _ policy
according to an acquisition functions - observe reward 2 update policy or value function
/. J

Analogous concepts, different terminology and usually different setting:

objective

- reward

surrogate model = value function
acquisition function - policy
acquire new sample - take an action

“‘deep RL”
uses
neural

networks



Bayesian Optimization

RBF
Model Uncertainty Posterior Samples Kernel Function
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Select sample x = observe objective > refit surrogate model
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Reinforcement Learning

system state, reward (I //,_

B €
gent "
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Many ways to construct agent that learns from reward:

actions
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Observe state = take action according to a control policy
- observe reward 2 update policy or value function

y

Analogous concepts, different terminology and usually different setting: | ... O

objective - reward
surrogate model = value function

: >0 =
avion, s

al\ &
acquisition function - policy 5:*:“iﬂ/_,_/
acquire new sample = take an action

accele raXo —
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online
measurements

Recall Example from Accelerator Lecture E. Cropp et al., in preparation

o

LINAC
Dipole 1

laser spot

drifting inputs quads for flat
beam transform

Gun RF read backs
(phase and amplitude)

Virtual Cathode Image

Beam Statistics on Screen:
Statistics (spot size, intensity)

Ox
7
~
Oxy N
pixel intensity b

Other Magnet Settings
(solenoid, steering)

-

L / X,y centroids
Flat Beam Quads (3) ‘
74
-~ s
== Multi-Objective Genetic Algorithm

Round-to-flat beam transforms are challenging to
optimize - 2019 study explored ability of a learned
model to help

Trained neural network model to predict fits to beam
image, based on archived data

Tested online multi-objective optimization over model
(3 quad settings) given present readings of other inputs

Used as warm start for other optimizers

Steering 5

DRZ Afterbox
[YAG Afterb

£2 Can work even under distribution shift
Train 0.125 Train
015 // T/ Test (2nd test) EOJUU Test (2nd test)
~~~~~~~~ new quad settings i o £ 0075
0.10 ] distribution <
. 2 0.050
: // shift 5
N 0.05 / © 0.025
o\ Pareto i }
front 0.00 0000 55 60 65
o 10 15 20 2% 30 Gun Voltage (MV)
K Laser Spot o, (pixels)

NN start point 5 0% .
initial solution

from neural
network model

fine-tuning

100

200
hand tune

300

400

500

600

700

Hand-tuning in seconds vs. tens of minutes

Boost in convergence speed for other algorithms



Example: RL on the same system

© & I A
o - o L. 2388 s o % o E
a z & 2 ) " ﬁ £33 Ty 2 2ee
g 3 % EFs4 B 2 g8 §E22.338 § BX &%
S ZEQ a8 E 5 & 3 2 A8s
2 s > = — = &3
« —1:_“:_{? i = 'l .
w
L v J

drifting inputs quads for flat
— beam transform

Gun RF read backs
(phase and amplitude)

o

Virtual Cathode Image Beam Statistics on Screen:
Statistics (spot size, intensity) Oy

online
measurements

o,
7
Other Magnet Settings Oy S o
(solenoid, steering) pixel intensity \ y

X,y centroids

Flat Beam Quads (3)
/
7
- Multi-Objective Genetic Algorithm

~._ hew quad settings

Pareto
front

Used learned NN model as a fast-
executing training environment for RL
control policy (Deep Deterministic Policy
Gradients)

Then tested on accelerator with/without
retraining the policy

In principle capable of taking both larger
jumps and fine-tuning

Had fastest convergence out of
algorithms tested once trained, but
required substantial overhead in training




Model Predictive Control

Immediate Past
(data sent to controller)

—8. . 7 e L

Measured disturbance

Previous control actions

Previous system output
o=—o—0—0—¢—0—
|
| S

Desired
output

[~ Possible Future
(at each time step, iterate through the next
series of proposed actions until the

predicted system output is acceptable)

L N

Actions proposed by controller
to achieve desired output

Predicted system output from model
given the proposed control actions

Prediction Horizon (N,)

Control Horizon (N )

Basic concept:

AN

Proposed
Actions

Use a predictive model to assess the outcome of

possible future actions
Choose the best series of actions
Execute the first action

Gather next time step of data

Process

Repeat
Measurements
Model _l
T -
Optimization e (rilrgena l\\/l(zts. Actions}




Model Predictive Control

Immediate Past
(data sent to controller)

R T P |

Measured disturbance

Previous control actions

Previous system output
|
| T—

Desired
output

—> Possible Future
(at each time step, iterate through the next
series of proposed actions until the

predicted system output is acceptable)

L N

Actions proposed by controller
to achieve desired output

Predicted system output from model
given the proposed control actions

Prediction Horizon (N,) =

Control Horizon (N )

Basic concept:

oA Wb

Proposed
Actions

Use a predictive model to assess the outcome of
possible future actions

Choose the best series of actions

Execute the first action

Gather next time step of data

Process

|1 Actions

Repeat
Measurements
Model
- A 1 =
1 e Criteria Met?
Optimization | o No Yes
|
|
NSl

b

* RL can be thought of as trying to learn the step for optimization over future time horizon
(choose optimal action at time t to maximize reward / minimize cost over future)

*  Without time-dependence, becomes optimization over an online system model

(as we often

use in accelerators)



Example from FAST RF gun < LoWretum -
LCW supply “'
. heater + <
Resonant frequency controlled via temperature top  control | mixing chamber & o6
valve
Long transport delays and thermal responses e & pump
Two controllable variables: heater power + flow valve o T02
Gun Water ong
. T . . transport—<
Applied model predictive control with a neural network model trained on System delay
measured data: ~ 5x faster settling time + no large overshoot Layout
TCAV
Existing Feedforward/PID Controller Model Predictive Controller
43.5 - - - - - -
—TCAV 445) - goay
N : : : : : : : C || ==TCAV target I | —TIN
A3 et ; : : : : : : : ; T v e viae s --TCAV target
s PRI ¢ PO
o \ EEAEEEEEEEE R o :
g a1 f\\L T N W S o \
2 VT T g
2 415 © 435 -\Ww,
: : : : ; : : : : ; : : : : | i M&MW e, e
410 2 4 6 8 10 12 14 16 18 20 22 24 26 28 0 1 2 3 4 5 6 7 8 ) 10
Time Elapsed [minutes] Time Elapsed [minutes]

Oscillations are largely due to the transport delays and water recirculation, not PID gains

Similar techniques can be applied to cryogenic systems Edelen, IPAC’15 ; Edelen, TNS, 2016



Both BO and RL have been used for online optimization/control of particle accelerators, with good success

f L] L] L] L] \ f L] L] \
Bayesian Optimization Reinforcement Learning
FEL optimization (Duris et al. 2020, Kirschner et al. Trajectory control (Kain et al.,, PRAB 2020)
PMLR 2019)

Iy
o

w

no. iterations

N

-

X-ray pulse energy (m))

| [—T E-05
; GP w/ corr. 210 — final
% 10 20 30 40 50 - initial
Step number -15 ---= target

0 25 50 75 100 125 150 175 200
no. episode

Emittance optimization at SPEAR3 (Hanuka et al.
2021) FEL optimization (O’Shea, et al., 2020)

Laser plasma accelerators (Jalas et al, PRL 2021, Magnet power supply (St. John et al., PRAB 2021)
Shaloo et al Nature 2020)

Fast switching between FEL pulse energies (Edelen et
\_ Injection efficiency P al., NeurlPS 2017)

Choice largely depends on need: e J

+ RL (and especially “deep” RL) is well-suited for continuous control, especially when a fast simulator exists for training
+ BOis well-suited for optimization of new problems where there is little existing information

 For more detail on RL, see Auralee’s USPAS lecture: https://slaclab.qithub.io/lUSPAS ML/slides/Day9 Reinforcement.pdf



https://slaclab.github.io/USPAS_ML/slides/Day9_Reinforcement.pdf

Summary

Bayesian optimization encompasses a broad set of flexible tools that are well-suited to solving
complicated black-box optimization problems for both operation of instruments and design,
particularly in setups where little to no previous information or data is available

Many improvements make Bayesian optimization more sample-efficient and suited to online
optimization of experiment setups (e.g. smoother sampling, constraints, physics-informed priors)

Reinforcement Learning came out of a different setting (continuous control, robotics, etc) and is
generally well-suited for time-dependent continuous control - in accelerators, it is being
examined for both optimization and continuous control

For more details on BO/RL in the context of optimizing/controlling scientific instruments see:
» USPAS course on Optimization and ML for Particle Accelerators:
https://slaclab.github.io/lUSPAS ML/
« Many more RL pedagogy details and examples in:
https://slaclab.github.io/lUSPAS ML/slides/Day9 Reinforcement.pdf



https://slaclab.github.io/USPAS_ML/
https://slaclab.github.io/USPAS_ML/slides/Day9_Reinforcement.pdf

