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Computational Challenges in Cosmic Frontier Theory

Experimental design

Parameter space sampling, bayesian optimization, variance-
reduction

Emulation techniques and when to use them

Gaussian processes, polynomial chaos cxpansions, and neural 
networks

I trained an emulator, now what?
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Computational Challenges in CF Theory

(Apologies in advance for the 
LSS/CMB bias)
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Computational Challenges in CF Theory

Since we believe large scale structure is sourced by a stochastic process, 
all inference in cosmology is statistical.

Positions of individual objects are not predictable, but we 
can make predictions for their statistical distribution. 
Most analyses use two-point correlations, e.g 

Equivalently in Fourier space: 

Cross power spectrum:

Compare measured and predicted correlations to constrain 
cosmological models.

⟨δ(x1)δ(x2)⟩

⟨δ(k1)δ(k2)⟩ = (2π)3δ(D)(k1 + k2)P(k)

⟨δm(k1)δg(k2)⟩ = (2π)3δ(D)(k1 + k2)Pgm(k)
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Computational Challenges in CF Theory

Inference
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Computational Challenges in CF Theory

Forward model
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Large Scale Structure Forward Modeling

First step is to model the dark matter distribution as a function of relevant 
cosmological parameters.
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Modeling complicated by fact that galaxies are discrete and biased 
tracers of the matter field.

Large Scale Structure Forward Modeling
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Observational effects mix and destroy information.

Large Scale Structure Forward Modeling
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LSS Forward Models — Perturbation Theory

Perturbation theory: 
Ansatz: 

Accurate, flexible, fast, but low k reach.
Evaluation speed still problematic for MCMC.

δm(x) = ∑
n

δn
m(x); δg(x) ∼ ∑

i

biδm(x)i

Foreman et al 2015 11



movie, simulation, statistics: Matt Becker, Ralf Kaehler, Yao-Yuan Mao, Rachel Reddick, Risa Wechsler (Stanford/SLAC)

matter distribution (180 Mpc) 

N-body Simulations
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LSS Forward Models — N-body Simulations

N-body simulations are converged to  but extreme expense 
prevents them from being used directly in analyses.

k ∼ 1

Springel et al 2021 13



A recipe for high accuracy models for non-linear galaxy and halo statistics:

N-body

104 CPU
 Hours

CF Theory Emulation

1. Run suites of simulations spanning currently-allowed 
cosmological space

Heitmann et al. 2013 14



CF Theory Emulation

1. Run suites of simulations spanning currently-allowed 
cosmological space

2.     Interpolate statistics within cosmological + galaxy formation 
model space

A recipe for high accuracy models for non-linear galaxy and halo statistics:

Emulator

~1 ms
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Experimental Design
Choosing where to generate 

training data is a key 
determining factor for how 
useful an emulator will be, 

but…

Dimensionality of 
parameter space precludes 
naive grid based sampling. 

3 points per dimension 
is already >2000 sims.

Monte Carlo sampling is 
wasteful.

Need something 
better! 18



Parameter Space Sampling — Latin Hybercube

Idea: decompose parameter space into regions of equal probability. 
Sample uniformly from these. In 1-dimension:
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Parameter Space Sampling — Latin Hybercube

To sample S dimensions with N points, divide up each dimension into N 
regions, sample N points such that only one point in each row and 
column. Similar to having N rooks on a chess board without threatening 
each-other.
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Sampling — Latin Hybercube

Pros:
Covers space much more 
evenly than MC sampling.
Reduces tails in nearest 
neighbors distances.

Cons:
Need to know how many 
samples you want (N) 
beforehand.
More computationally 
expensive to generate 
large numbers of samples.
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Sampling — Low-discrepancy Sequences

The study of low-discrepancy sequences came about in the study of the 
convergence properties of Monte-Carlo integration:

where the “discrepancy” 

can be interpreted as the worst-case maximum point density deviation 
over a uniform set.
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Sampling — Low-discrepancy Sequences
Low-discrepancy sequences minimize D, subject to the constraint that 
the N-th element of the set can be computed without computing the 

previous N-1 elements.

The “Sobol” and “Halton” sequences can be shown to minimize 
discrepancy in the large N limit. Sobol is preferred due to issues with 

Halton at small N.

23



Sampling — Low-discrepancy Sequences

Pros:
Computationally efficient to compute
Can easily generate additional samples after original design.

Cons:
??
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Sampling — Bayesian Optimization

1. Train emulator using 
an initial set of 
simulations.

2. Use initial model and 
uncertainty estimate 
(plus additional info) 
to choose new point to 
run simulation.

3. Profit!

Rogers et al. 2018 (1812.04631)
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Sampling — Bayesian Optimization

Don’t need a 
particularly accurate 
initial model to 
converge to something 
very accurate.
Some caution required 
about how much to 
weight actual posterior 
(what to set alpha to?)

Rogers et al. 2018 (1812.04631) 26



Preprocessing — Sample Variance Reduction

There exists a bias-variance trade off in generating training data:

The volume of a simulation controls the statistical error on quantities of 
interest (e.g. power spectra)

σ2
P(k)

P(k)
∝

1
V

1
Δkk2

 The resolution of the simulation controls the smallest usable scale in 
the simulation.

rmin ∝
V1/3

Nmesh
Nsim ∝

Compute hours
Nmesh

Want to minimize ,  and maximize  in order to build the best 
possible emulator…

σP(k) rmin Nsim
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Sample Variance Reduction — Control Variates

Want to maximize  subject to constraints on  and . Would be 
great if we could increase effective volume without increasing ?

We can via control variates:

Nsim σP(k) rmin
rmin

Given a noisy quantity (i.e. a measurement from simulations), 
but have access to a cheap correlated “control variate”, we can construct:

̂y ≡ ̂x − β( ̂c − μc)
we can then optimize  to minimize the variance of , givingβ ̂y

̂β =
cov[x̂, ̂c]

var[ ̂c]
leading to a reduction in variance of

var[ŷ]
var[x̂]

= 1 −
Cov2[x̂, ̂c]

Var[ ̂c]Var[x̂]
+

̂β2Var[ ̂c]
MVar[x̂]

= 1 − ρ2
xc +

̂β2Var[ ̂c]
MVar[x̂]
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Sample Variance Reduction — Control Variates

var[ŷ]
var[x̂]

= 1 − ρ2
xc +

̂β2Var[ ̂c]
MVar[x̂]

Application to cosmology introduced as CARPool in Chartier et al 20, 
Chartier & Wandelt 21, Chartier & Wandelt 22.

Usually use approximate N-body simulations for .
e.g. DESI FastPM effort (Ding et al 2022) used 500 FastPM mocks 
requiring 21M CPU hours in total

̂c

Need a control variate that is:
Inexpensive

Highly correlated with 
Analytically known 

̂x
μc

̂y ≡ ̂x − β( ̂c − μc)
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Zel’dovich approximation to the rescue

Kokron et al 2022
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Zel’dovich approximation to the rescue

ZA is inexpensive, highly correlated with the non-linear matter field,
and we can predict its mean exactly.

Kokron et al 2022 (incl. JDR)
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Zel’dovich approximation to the rescue: 

An illustrative example

Because the Zel’dovich realization is highly correlated with the N-body, 
we can simply subtract the difference between grid ZA and analytic ZA 

from the N-body measurement to remove noise.

DeRose et al. 2022
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Zel’dovich approximation to the rescue: 

Upshot

DeRose et al. 2023
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Leads to orders of 
magnitude increases in 
effective volume. 
Highly versatile, can be 
used on a large number 
of observables 
measured from a variety 
of different types of 
simulations
Control variates in 
general can be a very 
powerful technique for 
mitigating noise in 
simulation Monte Carlo 
estimates



Preprocessing — Miscellaneous

Some common preprocessing steps:
Reducing dynamic range (e.g. taking the logarithm)
Whitening
Smoothing (e.g. via Savitsky-Golay)
Principle component decomposition

Heitmann et al. 2013
Knabenhans et al 2019 34
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CF Theory Emulation

1. Run suites simulations spanning currently-allowed 
cosmological space

2.     Interpolate statistics within cosmological + galaxy 
formation model space

A recipe for high accuracy models for non-linear galaxy and halo statistics:

Emulator

~1 ms
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CF Theory Emulation

Gaussian processes (GP)
Polynomial Chaos Expansions (PCE)
Neural networks (usually simple fully connected MLPs)

There is now a large literature on emulation in the cosmology literature. 
Some commonly used options for surrogate models are:

Emulator

~1 ms
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Gaussian Processes

Rasmussen & Williams 2005
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Gaussian Processes

Rasmussen & Williams 2005
39



Gaussian Processes — Kernels

Common kernel choices are the Radial basis function (RBF) AKA 
a Gaussian…

and a common generalization called the Matern kernel, which 
converges to a Gaussian as ν → ∞

and  is the modified Bessel function of the second kind. Common choices 
for  are 5/2 and 3/2 due to simplicity of expression for kernel in these 
cases.

Kν
ν

Much of the secret sauce of Gaussian process 
regression is in the choice of kernel. 
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Gaussian Processes — 

Hyper parameter Optimization

Hyper-parameter 
optimization of the kernel 
function is often the most 
important and most 
expensive component of GP 
regression.

Common algorithms with 
give maximum likelihood 
estimates of these, but 
posterior distributions of 
them can be useful for 
robust error estimates from 
the GP. Rasmussen & Williams 2005
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Gaussian Processes — 

Scalability

Gaussian process regression is computationally limited by the 
computational expense of matrix inversion:

if  is not full rank, then this issue can be partially alleviated. A 

common example is if  for parameters  then  is block 

diagonal and “Kroneker” representations of the kernel can be used.

There are also a number of “approximate” GP models on the market, some 
of which scale quite well. See, e.g. KISS-GP, LOVE, SKIP…

K(X, X)
∂f

∂θi∂θj
= 0 θi , θj K(X, X)

42



Gaussian Processes — Summary

Gaussian processes have become the most common choice for 
emulation in cosmology. 

Pros:
Highly flexible
Relatively few parameters
Built in uncertainty estimates

Cons:
Not as scalable to many dimensions/large amounts of training 
data as other options.

training and prediction times scale with N
Kernel choice and hyper-parameter optimization can be finicky.

43



Gaussian Processes — References

Common libraries:
GPy: https://github.com/SheffieldML/GPy 
GPyTorch: https://github.com/cornellius-gp/gpytorch

A few useful papers/textbooks:
Rasmussen & Williams 2005
KISS-GP (http://proceedings.mlr.press/v37/wilson15.pdf)
SKIP (https://arxiv.org/pdf/1802.08903.pdf) 
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Polynomial Chaos Expansions

A common alternative to GPs. Trade flexibility for simplicity speed. A 
PCE of order  approximates a function, , as p A(Ω)

where  are expansion coefficients, , is a multi-index, and  are 
polynomials chosen to be orthonormal with respect to the PDF, .

For uniformly or gaussian distributed inputs over , this results 
in the Legendre and Hermite polynomials respectively.

ηβ β Ψβ(Ω)
p(Ω)

[−1,1]D

45



Polynomial Chaos Expansions — Truncation

Once a polynomial order is specified, fitting a 
PCE is a simple linear regression problem. All 
of the work in fitting PCEs is thus in specifying 
at what order to truncate the polynomial 
expansion. 

If  then 

Additional truncations often applied:
 where 

𝒜d,p = {β ∈ ℕd , ||α||1 ≤ p}

card(𝒜d,p) = (p + d
p )

𝒜d,p,q = {β ∈ 𝒜d,p , ||α||q ≤ p}

||β||q = (
d

∑
i=1

βq
i )

1/q

q=0.6 hyperbolic trunc.
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Polynomial Chaos Expansions — Summary

PCE is becoming a more commonly adopted strategy for relatively low 
dimensional problems. Often combined with PCA to reduce number of 

polynomials required.

Pros:
Extremely easy to fit.
Evaluation time independent of N.

Cons:
Not as flexible as GPs.

Common libraries:
Chaospy: https://github.com/jonathf/chaospy
UQLab: https://sudret.ibk.ethz.ch/software/uqlab.html 
Uncertainpy: https://github.com/simetenn/uncertainpy 
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Neural Networks

Pros:
Highly flexible.
(can be) very fast at evaluation 
time.

Cons:
Very easy to overfit.
Requires large amounts of 
training data.
Training very temperamental.

Spurio Mancini et al. 2021
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Error quantification
Emulator error structure can be highly non-trivial.

If you’re making your emulator publicly available, it should 
come with a quantitative way to incorporate emulator error into 
analyses. You can usually do this for free via k-fold cross 
validation.

DeRose et al. 2023
50



Highlights — Model Differentiability
One major upside to emulators is that they are often very 

trivially differentiable. This enables fast inference via HMC.
NUTS posterior required 10x fewer samples that MH (Cobaya)

Campagne et al 2023 51



Highlights — 

Boltzmann Solvers/Perturbation Theory

Spurio-Mancini et al. 2021 DeRose et al. 2021

Acceleration of expensive theoretical calculations is 
perfect application for simple NN architectures.
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Highlights — Non-linear matter power spectrum

Emulators have lead to a huge leap in how accurately we can model
the matter power spectrum.

DeRose et al 2023

Semi-analytic GP PCA+PCE PCA+PCE 
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Highlights — Dark matter halo statistics

And dark matter halo statistics…

McClintock et al 2018 Bocquet et al 2020
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Highlights — Galaxy Clustering

Yuan et al. 2023

Emulating outputs of lightcone simulations with observational 
systematics applied enables use of exotic, and more constraining 

statistics.
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Highlights — Lyman Alpha Forest

Emulating hydrodynamical simulation outputs enables use of Lyman alpha
forest to constrain light relics.

Bird et al. 2018

Rogers & Peiris 
2020
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Highlights — Galaxy Formation Models

Hearin et al. 2022 Alsing et al. 2022

Explosion of applications to emulating 
complex galaxy formation models (e.g. 

Semi-analytic models and Stellar 
population synthesis)
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Summary

Choice of how to sample training data, and how to preprocess that 
training data is often the most important determining factor in the 
accuracy of emulators.

Gaussian processes are the workhorse of CF emulation, but 
Polynomial Chaos Expansions are worth considering for low 
dimensional problems.

Neural network emulation is becoming essential for fast analytic 
predictions.

The concept of emulation has revolutionized the accuracy that we can 
attain in CF models.
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