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ML Reconstruction

T. Wongjirad SLAC SSI 2023 [08/16/2023]

Last week I talked primarily about Reconstruction for LArTPCs where

Deep neural networks having success in identifying key physical quantities for studying neutrino interactions

Signal conditioning
“Hit” finding

(first-stage summary) Clustering+particle ID Interaction Measurement
Observable
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Challenges
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Reconstruction: are we getting all the information that we can 
from our data, precisely and accurately?

Simulation/Modeling: can we translate physics to observables 
faster? Can we better use data-driven methods?

Inference: are we testing our models against data as best as we 
can while accounting properly for and mitigating our model 
uncertainties?

Operations: are we saving the right events? Is the experiment 
running optimally? Can we detect and make decisions faster?
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Fast ML on FPGAs to 
implement special rare 
process triggers

frai.2022.855184

This talk will touch on early work to eventually address other 
challenges through generative models

https://doi.org/10.3389/frai.2022.855184


Challenge: Surrogate Simulations
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Simulation/Modeling: can we translate physics to observables 
faster? Can we better use data-driven methods?

Like in other frontiers, generating simulated data is a major bottleneck of analyses

● Example: Individual events can take 5-10 mins/event+ for MicroBooNE TPC 
with simulated cosmics + neutrino interaction

● Data driven methods are used to get better estimate: in MicroBooNE and SBN 
experiments which are on surface, cosmic background data is collected and 
used in simulated data by adding neutrino interaction – but cannot save 
enough of these events due to processing and storage constraints
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Simulations for LArTPCs
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Outline
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Optical Data
(measuring Scintillation photons)

RED: Optical sensors

TPC Wireplane Data 
(measuring ionization)

tim
e

time

● Approach to improve optical data modeling 
using machine learning

● Early work to use generative models to 
reproduce LArTPC wire plane images



Optical Data
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Liquid argon (and other cryogenic noble liquids) are 
excellent scintillators: 40k scintillation photons 
produced per MeV of deposited energy

Provides measurement of time when particles(s) 
traverse the detector

Useful for reconstruction: pattern of light helps with  
same-time clustering for ionization 3D spacepoints

There is some Particle ID information as well between 
high (proton, nuclei) vs low (electron, muon) density 
ionizing particles

Matching pattern of 
sensor position and 
total charge to 
cluster spacepoints



Optical Simulation Challenges
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● CPU photon transport simulation for O(GeV) events 
is prohibitively expensive:
Requires transporting O(10M) photons!

● Current standard practice is to use an approximate 
model

○ Generate table of output vs. position for voxelized data
○ Analytic function for mean sensor output vs. position 

● Unknown parameters
○ Reflection/Transmission for 128 nm (VUV) scintillation 

photons not known for many materials/surfaces
○ Still some uncertainties in response of the wavelength shifter 

(TPB: converts 128 nm to detectable 420 nm light)

Approximate 
models

One direction: GPU photon sim
[EPJC 81: 349 (2021)]

Opticks - S. Blythe S. Siebert - Chroma

https://iopscience.iop.org/article/10.1088/1748-0221/14/09/P09022/pdf
https://github.com/simoncblyth/opticks
https://github.com/BenLand100/chroma/forks


Neural Network Estimate
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● Neural network learning 
function to map 3D position 
and photons emitted at that 
location to expected signal in 
the array of optical sensors

● Trained on point-source full 
photon transport simulations 
distributed throughout the 
detector

Wei Mu et al 2022 Mach. Learn.: Sci. Technol. 3 015033

https://iopscience.iop.org/article/10.1088/2632-2153/ac58e2/meta


Neural Network Estimate
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● Good reproduction of 
predicted simulation

● Simple Neural network 
operations produces large 
speed-up compared to geant4: 
20-50x



Outline
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Optical Data
(measuring Scintillation photons)

RED: Optical sensors

TPC Wireplane Data 
(measuring ionization)

tim
e

time

● Approach to improve optical data modeling 
using machine learning

● Early work to use generative models to 
reproduce LArTPC wire plane images



Capturing Neutrino Interaction Images w/ LArTPCs
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MicroBooNE TPC



Capturing Neutrino Interaction Images w/ LArTPCs
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Charged particles produce 
ionization electrons: tell us 
path of particle

Also produces light: tells 
us time of the event



Capturing Neutrino Interaction Images w/ LArTPCs
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Ionization electrons 
drift towards 
wireplanes



Capturing Neutrino Interaction Images w/ LArTPCs

T. Wongjirad 15UM Amherst Seminar 5/9/2023



Capturing Neutrino Interaction Images w/ LArTPCs
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Regions of ionization past 
induction wires and collect 
on last collection wires.

Induces current on wires 
intersecting at (y,z)



Capturing Neutrino Interaction Images w/ LArTPCs
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Recording wire 
signals over time, 
detector produces 
image-like data



Capturing Neutrino Interaction Images w/ LArTPCs
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tim
e

wire number

Plane 1 Plane 2 Plane 3

Example of data event in MicroBooNE. View of same event for each projection.

Color scale indicates amount of ionization electrons seen on wire at given time



LArTPC data
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● Patches of LArTPC images
● Globally Sparse: most pixels are empty

○ Non-zero pixels ~3-5%
● Locally Dense: patches have specific, 

thin shapes
○ Tracks: lines
○ Showers: branching lines
○ The pixel values along the lines contain info 

on particle type



● Define latent vector,     , whose distribution is one we know how to sample, 
e.g.     

● Find a map from      to      ,          ,  so that 

Generative Model
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Latent space Image space

Sample z



● Use a neural net for             and train on data to map into data region
● Need something to tell you if good or bad spot: hard since region where 

images located not defined
● Learn a function to tell you if good or bad: Discriminator

How to Determine f

T. Wongjirad SLAC SSI 2023 [08/09/2023] 21

Latent space Image space

Good/Real

Bad/Fake



DCGANs
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Not gotten very good results with GANS

(Curious to know about any projects with GANs 
using IF sample – don’t hesitate to let me know 
your experience: good or bad!)

Typical result training collapses: discriminator, too 
good, too early. Generator produces unconving 
images

DCGAN Tutorial

Generated Samples 
using DCGAN[arxiv:1511.06434]

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://arxiv.org/pdf/1511.06434.pdf


● Is sparse nature of LArTPCs an issue?
● Smaller space to find?

For LArTPC Images

T. Wongjirad SLAC SSI 2023 [08/09/2023] 23

Latent space Image space

Good/Real

Bad/Fake



Adding Noise
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● Training collapses when generated 
and real images very different

● Discriminator becomes too good
● Add noise to real images, so initial 

overlap with generated sample



GANs
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Adding noise helps a little – but not very good



Pixel-CNN
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code index

Codes?

Auto-regressive approach train to predict 
sequence in smaller space

Use a CNN (with masking) 
to learn these distributions



VQ-VAE for LArTPCs
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● Use Vector-Quantized 
VAE to describe image 
as sequence of codes

● Patches in image 
mapped to 1 of 256 
embedding vectors

● Embedding vectors 
learned during 
Autoencoder training

● Decoder learned as part 
of AE training

● Does not require that we 
train a discriminator



Pixel-CNN Results
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arXiv:2204.02496

● Image quality better than 
GAN

● Seeing wider variety of 
patterns

● Not seeing as many long 
lines or showers

● More quantitative 
measures latter

https://arxiv.org/abs/2204.02496


Diffusion Models
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● Change our generative picture a little
● Choose our latent space to be same size as X
● Associate map between X and Z as some process that runs for time, t=0 

to t=T so that 

Image space

@ t=0
@ t=T

For LArTPCs, instead of trying to find (very thin) manifold in X (as we 
did with GAN), move samples into Normal Distribution

Image space



SDEs
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● The process can be modeled as a stochastic differential equation (SDE)
● Diffusion process defined by drift and brownian motion
● Can define a reverse process back to data. Requires estimating the score 

function: related to gradient of p(x). In practice, this is a neural net.



SDE
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● Diffusion Process SDE
● Choice: Variance Preserving - SDE

Drift Brownian Motion
Provides change in random directions

Process by which concentrations 
dissipate to equilibrium

Note: For us, equilibrium not uniform, but the Normal distribution

Y. Song et al. 
arXiv:2011.13456 (2020)

Change in pixel 
values at t

https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2011.13456


SDE: Forward Process
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● The distribution after some time, t, using SDE

Starting with original image at t=0,       , gives the 
distribution of pixels at later time, t. 

At time t=T, configure parameters such that



SDE: Reverse Process
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Reverse process SDE, with time parameter s goes from 0 to T and s=T-t, is

B. Anderson. Stoch. Proc. and their App., 12 (3):313–326 (1982)

Output is change for every pixel value: U-Net Architecture

Estimate with neural net: 

https://www.sciencedirect.com/science/article/pii/0304414982900515


Where we can sample a batch with N images
 
Each image is associated with a different time, t, sampled uniformly from (0,T]

SDE: Reverse Process
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B. Anderson. Stoch. Proc. and their App., 12 (3):313–326 (1982)

After training s, we can solve Reverse SDE to sample 

Empirical loss follows from a previous slide’s:   

https://www.sciencedirect.com/science/article/pii/0304414982900515


Sampling
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Recall: variance changes with time. Largest at time of sampling, near zero when at end of reverse 
process. Thus we are using Annealed Langevin Dynamics.

Large variance at beginning helps produce images from different modes

Sampling (reverse process) time direction

Score moves samples towards  
high-probability regions



Score-matching Diffusion Model for LArTPCs
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Trained a VPSDE using the Y. Song repo

Dataset consisted of 64x64 pixel crops of 
images from the PiLArNet open dataset
Note: not full particle trajectories.

Z. Imani
Tufts Physics

S. Aeron
Tufts ECE

Supported 
through 

NSF IAIFI Plateau reached by 50 epochs

https://github.com/yang-song/score_sde_pytorch
https://osf.io/bu4fp/
https://iaifi.org/


Score-matching Diffusion Model for LArTPCs

T. Wongjirad SLAC SSI 2023 [08/09/2023] 37

Which set, left or right, is training images – which are generated?

Image fidelity enough to be indistinguishable?



Real versus Fake
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With exception of one person, accuracy for small sample of scanners 
statistically consistent with random guessing

Want to try yourself?

100 examples to judge can 
be found here.

(Don’t forget to do the 
practice quiz to help train 
yourself.)

arXiv:2307.13687 (2023)

https://forms.gle/ijWR6rHRx2TUztGV9
https://arxiv.org/abs/2307.13687


Evaluating Quality
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Need additional measures to quantify beyond visual inspection:

arXiv:2307.13687 (2023)

● High dimensional comparisons between images
● Comparison of other neural network outputs
● Physics-analysis motivated quantities

https://arxiv.org/abs/2307.13687


Evaluation: High-Dim. Metrics Directly on Images
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● Each comparison is done between the training and generated images 
and the validation and generated images



Evaluation: Comparing SSNet Behavior
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● Another approach: compare outputs of a neural network 
● Given prominent role of track/shower pixel labeling in neutrino reconstruction, 

we use SSNet [Phys. Rev. D 99, 092001]

Version of SSNet trained on the 
training data.

SSNet Weights for those who 
want to compare: zenodo

https://link.aps.org/doi/10.1103/PhysRevD.99.092001
https://zenodo.org/record/4728517


Evaluation: Comparing SSNet Behavior
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● labeling frequencies 
and output scores

● For SBDM, matches 
well after 50 epochs of 
training

● VQ-VAE generated 
images also compared 
– SBDM clear 
improvement, matching 
visual judgement



Evaluation: SSNet-FID
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● For natural images, a standard metric is the FID or Frechet Inception Distance
● It compares the feature map of the last layer of the ImageNet-trained Inception 

v3 classifier
● SSNet being a U-Net, using that layer was not tractable, so we looked at layers 

near the bottleneck

Inception v3 layers
U-Net Layers

Features 
from here

Features 
from here



Evaluation: SSNet-FID
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● SSNet-FID comparing train and test sets each to the generated image set
● Generated images produced for several epochs
● Plateau around 50 epochs, in agreement with metrics

SSNet-FIDN=10K for future comparisons



Evaluation: Reco-inspired Quantities 
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● Ultimately, threshold for “good enough” means no bias introduced into 
reconstruction quantities and physical observables 

● Our dataset are only crops: so full reconstruction of momenta not possible yet
● Use algorithms related to energy calculation

○ Track length of track-like pixels (judged by SSNet) - proxy for range 
○ Number of shower pixels in an image - proxy for calorimetry



Evaluation: Reco-inspired Quantities 
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● Track length and width derived from 1st and 2nd PCA axes
● Similar – but statistically different - not perfect, close enough?
● Track width least similar: generated tracks somewhat too wide

 (Jitter? Scattering? Delta-rays?)



Checking for Mode Collapse
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● Do not want generated images 
to be small variations on 
training set examples

● Used Earth Mover’s distance 
(Wasserstein-1 distance) to find 
closest neighbors

● Match trajectory direction
● Shower patterns varied
● Tracks have variation in 

high-energy deposits (expected 
from Bethe-Block distribution)

● Similar EMD among generated 
and training images



SBDM Next Steps
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● Proof-of-principle that despite LArTPC sparse structure, generative models 
seem possible if using Diffusion Models

● Establish metrics to compare future work by others – nascent effort so lot’s 
of easy things to try 

○ E.g. How do Flow networks perform?
● All methods and image sets used will be posted on zenodo (coming soon: 

watch for updates to arXiv:2307.13687 (2023)
● All metrics tell a consistent story: converge around 50 epochs and plateau, 

matching (subjective) visual quality trends

https://arxiv.org/abs/2307.13687


SBDM Next Steps
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● Next biggest step is generation of individual particles conditioned on 
momentum

● Require bigger image sizes: 128x128 or 512x512
● Neutrino interaction can be composed with individual particles



Uses: Image repair/Gap Filling
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Missing sensor-signals either from induction dynamics or 
non-responsive wires is a major cause of downstream 
reconstruction errors

Limited use (e.g. no generation of particles entirely in a gap) can 
help a lot to:

● Reduce broken tracks
● Reduce False 3D spacepoints
● Connect tracks in uninstrumented regions between detector 

modules

Past efforts identity right 
regions, but do not produce 

realistic looking track 
segments



Uses: Cosmic Background Augmentation
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Off-beam Event 
Image

● In order to estimate backgrounds 
and mis-reconstruction rates due to 
cosmic background, surface 
LArTPCs use data taken when 
beam is off

● Simulated neutrino are overlaid into 
image to make simulation samples

● Not nearly enough samples can be 
recorded due to storage

● Can we generate large enough 
background crop (512x512 or 
1024x1024)?

● Must generate 3-plane consistent 
image: potential challenge



Uses: Iterative final state comparisons (speculative)
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● Reconstruction makes one-pass and extracts final state particles from 
image of neutrino interaction

● Use generative models to generate expected image of propose final 
states and use comparison to inform errors and action:

○ E.g. adjust reco vertex, recluster particle, retrieve portion of raw image for review, 
instigate image repair

○ Moving from the ML into AI for Neutrino Physics
● Near-term useful comparisons possible

○ Compare photon-induced shower (BG)
versus small proton+electron shower 
(signal) using matching images

○ Probing classifier robustness by modifications of
particles in images

Reconstruction

Final state 
hypothesis

Gen. Model

Compare 
generated to data 



Other Data-Driven Possibilities
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● Elements of Neutrino Interaction Generators do not have good 
theoretical models yet, e.g. hadronic output

● Neutrino oscillations have near and far detector data to constrain models 
of flux and cross section and to extrapolate far detector neutrino flux

○ Remove reliance of cross section or flux models through data representations learned 
by training generative models

SBN Program DUNE



Conclusions
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● Early days of generative modeling for Neutrino Physics
● Despite sparse LArTPC images, at least diffusion models produce quality 

images both visually and in the reproduction of various metrics
● Opens doors to approach several challenges in new ways



Backups
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Definitions
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https://audeg.github.io/talks/talkAIP.pdf

https://audeg.github.io/talks/talkAIP.pdf


Definitions: Frechet Inception Distance
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From Wikipedia



Flash Matched Cluster
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ML Reconstruction
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Last week I talked primarily about Reconstruction for LArTPCs

Deep neural networks having success in identifying key physical quantities for studying neutrino interactions

Signal conditioning
“Hit” finding

(first-stage summary) Clustering+particle ID Interaction Measurement
Observable

59



Challenges

T. Wongjirad

This talk will touch on early work to attack the other challenges
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Reconstruction: are we getting all the information that we can 
from our data, precisely and accurately?

Simulation/Modeling: can we translate physics to observables 
faster? Can we better use data-driven methods?

Inference: are we testing our models against data as best as we 
can while accounting properly for and mitigating our model 
uncertainties?

Operations: are we saving the right events? Is the experiment 
running optimally? Can we detect and make decisions faster?

60

Fast ML on FPGAs to 
implement special rare 
process triggers

frai.2022.855184

https://doi.org/10.3389/frai.2022.855184


Challenges
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Simulation/Modeling: can we translate physics to observables 
faster? Can we better use data-driven methods?

Like in other frontiers, generating simulated data is a major bottleneck of analyses

● Example: Individual events can take 5-10 mins/event+ for MicroBooNE TPC 
with simulated cosmics + neutrino interaction

● Data driven methods are used to get better estimate: in MicroBooNE and SBN 
experiments which are on surface, cosmic background data is collected and 
used in simulated data by adding neutrino interaction – but cannot save 
enough of these events due to processing and storage constraints



Simulations - Generative Models
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Score-based Generative Modeling shows promise for generating LArTPC-like images

Model generation as the reverse of a diffusion process bringing 
data images to noise



Simulations - Generative Models
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Which set, left or right, is training images – which are generated?

More details in next Wed. talk: “Generative Model Applications 3”



Simulations - Data Driven/Differentiable
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Differentiable (surrogate) simulations save time by allowing a way to possible reweight MC events 
rather than generating additional samples with variation in detector physics parameters

Also enables simulation-based inference for a number of exciting applictions

https://arxiv.org/abs/2211.01505

https://arxiv.org/abs/2211.01505


One more Challenge
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Accelerating Development: Are we providing enough tools to 
the community to enable new ideas and new contributors?



LArTPC Neutrino Interaction (Simulation) Dataset
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MicroBooNE has released some LArTPC simulations: cosmic data overlaid with simulated neutrino interaction



LArTPC Neutrino Interaction (Simulation) Dataset
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https://arxiv.org/abs/2006.01993

Another public dataset of 3D voxels along with simple 2D projections

https://osf.io/vruzp

https://arxiv.org/abs/2006.01993
https://osf.io/vruzp


Conclusions
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● ML techniques have already impacted the physics program of several 
neutrino experiments

● Many develops across experiments should provide further impact
● Developments have been somewhat focused on reconstruction
● But there are still other research challenges that ML might help to advance
● Cross pollination between experiments and frontiers will surely accelerate 

progress 



BACK UP SLIDES
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Sampling with Reverse Process
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With the choices for:
 𝜷(t)

Sampled Brownian motion direction

Point is not to get too into the weeds, but can integrate



Sampling with Reverse Process
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With the choices for:
 𝜷(t)



Transport Problem
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● Comparison of two sampled distributions

Find Pij that 
minimizes total cost



Wasserstein vs. Sinkhorn Cost Optimization
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● Sinkhorn distance relaxes constrain on Pij and imposes term that 



AE-OT
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To get around how “thin” the image space 
might be, we trained an autoencoder to 
learn embedding for images into a lower 
dimensional space

Train Generator to map from Z to 
embedding space H

Used Optimal Transport to measure how 
close or far generated examples are from 
real ones.

Training examples

Generated examples

[AE-OT]

https://openreview.net/pdf?id=HkldyTNYwH


LArTPC Primer
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Capturing Neutrino Interaction Images w/ LArTPCs
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MicroBooNE TPC



Capturing Neutrino Interaction Images w/ LArTPCs
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A neutrino 
(dashed grey) 
passes into the 
detector and 
interacts 
producing 
charged particles 
(solid yellow)



Capturing Neutrino Interaction Images w/ LArTPCs
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Charged particles produce 
ionization electrons: tell us 
path of particle

Also produces light: tells 
us time of the event



Capturing Neutrino Interaction Images w/ LArTPCs
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Ionization electrons 
drift towards 
wireplanes



Capturing Neutrino Interaction Images w/ LArTPCs
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Capturing Neutrino Interaction Images w/ LArTPCs
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Recording wire 
signals over time, 
detector produces 
image-like data



Capturing Neutrino Interaction Images w/ LArTPCs
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Capture 3 projection 
images with wire planes

Can solver inverse 
problem to recover 3D 
energy deposits

Ionization signals on wires 
coincident in time provide 
info for (Y,Z) position

X position given by time 
delay from light signal



Capturing Neutrino Interaction Images w/ LArTPCs
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tim
e

wire number

Plane 1 Plane 2 Plane 3

Example of data event in MicroBooNE. View of same event for each projection.

Color scale indicates amount of ionization electrons seen on wire at given time



Capturing Neutrino Interaction Images w/ LArTPCs
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Flavor determined from finding partner lepton (muon,electron) produced in interaction

Neutrino energy inferred from momenta of resulting particles



Neutrino Oscillation Analysis

T. Wongjirad 85

Flux model       -nucleus 
interaction model

Detector Sim

Reconstruction

Calculate 
observables

(Truth) final-state particles

(reco) final-state particles

Detector Outputs
Ionization

Optical

Observables

SLAC SSI 2023 [08/09/2023]



Neutrino Oscillations
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Neutrino Oscillation: 2-flavor example
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Neutrino Oscillation: 2-flavor example
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Neutrino Oscillations
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Neutrino Oscillation: 2-flavor example
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Key signature is 
oscillatory prob function 
of L/E

SLAC SSI 2023 [08/09/2023]



Neutrino Oscillation: 2-flavor example
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Key signature is 
oscillatory prob function 
of L/E

SLAC SSI 2023 [08/09/2023]



Neutrino nucleon Interactions
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Never scattering on a free quark.

Dominant interactions at        at  
(typical flavor and energy for accelerator      ) 

SLAC SSI 2023 [08/09/2023]



Cherenkov
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Other experiments analyze the pattern of Cherenkov Radiation to infer particle 
momenta and type.

Spatial arrange of optical sensors not grid-like

SLAC SSI 2023 [08/09/2023]

Example: Super-Kamiokande, T2K, Hyper-K Example: IceCube

EM showers
(fuzzy ring)

Muons
(sharp ring) Muon 

(from           )

Electron or Tau 
(from            or             )

Observing atmospheric + 
astrophysical neutrinos


