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Symmetries
Symmetry in physics: a property that remains unchanged under some transformation.

Discrete symmetries
- finite groups, permutation group
  (Graph neural network, Transformer)

- parity / mirror
- time inversion

Continuous symmetries
- Lie groups

Local symmetries
- gauge symmetries
   (Lattice gauge equivariant CNN)

Global symmetries
- translation  (Convolutional neural network)

- rotation  (Group-equivariant CNN, Steerable CNN)

- time translation (Recurrent neural network)
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Noether’s theorem

Emmy Noether
(source: Wikipedia)

Every continuous symmetry of the action corresponds to a conservation law.

Symmetry Conservation law

Translation in space Conservation of momentum 
(CNN)

Translation in time
Conservation of energy 
(Hamiltonian NN, Lagrangian NN)

Rotation in space Conservation of angular momentum
(G-CNN, Steerable CNN)

Gauge invariance Conservation of charge 
(L-CNN, equivariant coupling layers)

https://en.wikipedia.org/wiki/Emmy_Noether


Symmetries and ML Andreas Ipp 4

Outline

Motivation Toy model

Translational symmetry Lattice gauge symmetry

Bulusu, Favoni, AI, Müller, Schuh, Phys. Rev. D 104 (2021) 074504 Favoni, AI, Müller, Schuh, Phys.Rev.Lett. 128 (2022) 032003 
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Motivation
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QCD phase diagram

Sun (surface): 
6000°C ≈ 0.5 eV  

Sun (core): 
15 million °C ≈ 1.3 keV

Quark-Gluon Plasma: 
1.7×1012 °C ≈ 150 MeV
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Quark-gluon plasma
● Existed in the early universe
● Produced in heavy ion collisions
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0

Initial state: Lorentz-contracted nuclei
(color glass condensate)

Collision event 

Glasma (τ ≈ 0 - 1 fm/c): quasi-classical fields
(classical field equations)

QGP (τ ≈ 1 - 10 fm/c): quarks and gluons
(relativistic viscous hydrodynamics)

Hadronization (τ ≈ 10 fm/c):
confinement transition → hadron formation

Hadronic gas (τ ≈ 10 - 15 fm/c): hadrons
(kinetic transport theory)

Freeze-out (τ ≈ 15 fm/c):
interactions stop

Stages of a heavy-ion collision

1 fm /c≈3.3⋅10−24s≈3.3ys
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Colored particle-in-cell method

[A. Dumitru, Y. Nara, M. 
Strickland: 
PRD75:025016 (2007)]

Generalization of the 
particle-in-cell 
method from plasma 
physics for strong 
interactions.

Based on real-time 
lattice gauge theory in 
a classical regime.

AI, D. Müller, Phys. Lett. B 771 (2017) 74
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Dispersion-free propagation

For details see:
AI, D. Müller, Eur.Phys.J. C78 
(2018) no.11, 884

Standard Wilson action:

implicit part semi-implicit part

Discretized action for the semi-implicit scheme: 

Variational 
integrator:
Discretized 
equations of 
motion from 
discretized action

with
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Simulations of the collision process

AI, Müller, Eur.Phys.J.A 56 (2020) 9, 243
AI, Müller, Eur.Phys.J. C78 (2018) no.11, 884
AI, Müller, Phys. Lett. B 771 (2017) 74 
Gelfand, AI, Müller, Phys. Rev. D94 (2016) no.1, 
014020 
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Computational challenges

Simulating small part of nuclei
at RHIC energies:

γ-factor: 100
Lattice: 2048 × 1922 cells
Gauge group: SU(2)
Color sheets: 1
Simulation box: (6 fm)3

→ 25 GB simulation data
→ 192 core hours on 
     Vienna Scientific Cluster (VSC-3)

Simulating realistic off-central full size nuclei 
at LHC energies:

γ-factor: 2500
Lattice: (25×20480) × 19202 cells
Gauge group: SU(3)
Color sheets: 100
Simulation box: (60 fm)3

→ 25 PB simulation data
→ 5 million core years on VSC-3
        (2020: 150 years on VSC-3; but only 130 TB RAM available)
        (2023: 55 years on VSC-5; 355 TB RAM available)
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Machine learning in fluid dynamics
Accelerating Eulerian Fluid Simulation With Convolutional Networks
Tompson et al, arxiv:1607.03597

Lat-Net: Compressing Lattice Boltzmann Flow Simulations using Deep Neural Networks
Hennigh, arxiv:1705.09036

● Compress computation time and 
memory usage

● Use convolutional autoencoders 
to compress state size

● Learn dynamics on compressed 
form

● Can generalize to larger grid 
sizes
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Relativistic hydrodynamics
Applications of deep learning to relativistic hydrodynamics
Huang et al., arxiv:1801.03334

● Speed up simulation time from 20 min to few seconds
● Network had to be trained with 10,000 initial and final state pairs



Symmetries and ML Andreas Ipp 15

Toy model
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Learning a simple function
Example in PyTorch

Learn f(x) = x3
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Learning a simple function

Learn f(x) = x3
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Learning a simple function

Symmetry: f(-x) = -f(x) 

learned approximately, 
but small deviation remains

Learn f(x) = x3
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Imposing the symmetry
Example in PyTorch

Learn f(x) = x3Learn f(x) = x3

Remove bias and 
use antisymmetric 
activation function 
→ every layer is 
antisymmetric



Symmetries and ML Andreas Ipp 20

Imposing the symmetry

Symmetry: f(-x) = -f(x) 

exactly preserved by 
construction
(without bias, tanh)

Learn f(x) = x3
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Generalization beyond training domain
With bias, sigmoid Without bias, tanh

Generalization is 
difficult.

Imposed symmetry is 
preserved everywhere.

(This does not mean 
one can trust the result 
everywhere.)
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Generalization beyond training domain
With bias, sigmoid With bias, ReLU Commonly used 

activation function:

Slightly better 
generalization 
possible, but symmetry 
not exactly preserved
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Trying to solve for wrong symmetry
With bias, sigmoid

Generic network can 
also learn symmetric 
function approximately.

Antisymmetric fit to a 
symmetric solution 
fails.

Without bias, tanh

Learn f(x) = x2
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Translational symmetry
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Convolutional neural networks

→ local information: only nodes „nearby“ are connected
→ Weight sharing by sliding the same kernel across the 
     whole image

→ Every input node connected to every output node

Image: https://cs231n.github.io/neural-networks-1/ 

Image: 
https://towardsdatascience.com/convolutional-neural-networks-from-the-ground-up-c67bb41454e1 

Dense neural network: Convolutional Neural Network
 (CNN):

https://cs231n.github.io/neural-networks-1/
https://towardsdatascience.com/convolutional-neural-networks-from-the-ground-up-c67bb41454e1
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Deep learning

1960s: shallow neural networks
1960-70s: backpropagation
1980s: convolutional networks (CNN)

1990s: supervised deep learning
2006s: modern deep learning
2012: AlexNet (first GPU CNN)
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Equivariance (covariance) vs. invariance

Adapted from: https://towardsdatascience.com/sesn-cec766026179 

https://towardsdatascience.com/sesn-cec766026179
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Translational symmetry
Equivariant architecture (EQ)

Strided architecture (ST) Flattening architecture (FL)
Bulusu, Favoni, AI, Müller, Schuh,  Phys. Rev. D 104 (2021) 074504
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Complex scalar field in 1+1D

Complex scalar field action: 

Lattice formulation: 

Dual formulation with integer fields k, l
solves sign problem Gattringer, Kloiber (2013)

Observables: Particle number density: Squared absolute value of field:

with chemical potential µ

https://inspirehep.net/literature/1118274
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Predicted vs. true values

Generalization to smaller chemical potential:

Ensemble averages for each μ: 

Training point

Generalization to larger lattices:

Predicts Silver Blaze phase transition

Bulusu, Favoni, AI, Müller, Schuh, 
Phys. Rev. D 104 (2021) 074504
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Comparison of architecture types

Test regression tasks on 
observables of a scalar field 
model in 2 dimensions:

Bulusu, Favoni, AI, Müller, Schuh, 
Phys. Rev. D 104 (2021) 074504

For fair comparison, best architectures 
for each type have been obtained by 
an Optuna optimization (scanning 
through various kernel sizes, number of 
layers, number of channels, …)

Best architectures are retrained 10 
times and evaluated on the validation 
set.
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Why can the models generalize so well?

Without ensemble average, 
individual configurations 
cover a large range of 
possible output values.

Train at

Test for

Input distribution Output distribution

and 60 × 4

and various lattice sizes
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Generalization to larger μ

(No ensemble average)

Train at

Test for

Test for
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Detection of flux violation
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Detection of flux violation
Generalization to different number of worms Generalization to different lattice sizes
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Lattice gauge symmetry
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Symmetries on the lattice

Translational symmetry 
→ Convolutional neural networks
    (CNNs)

Rotation, mirror symmetry
→ Group equivariant CNNs
    (G-CNNs)

Lattice gauge symmetry
→ Lattice gauge equivariant CNNs
    (L-CNNs)

Favoni, AI, Müller, Schuh,
Phys.Rev.Lett. 128 (2022) 032003 

Bulusu, Favoni, AI, Müller, Schuh,
Phys. Rev. D 104 (2021) 074504

Cohen, Welling, ICML 2016
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Yang-Mills action vs. Wilson action
Wilson action

Plaquette

Yang-Mills action

Field strength tensor

Taylor expansion in small lattice spacing reproduces continuum action:

Gauge transformation

Covariant derivative

Gauge transformation

Link variableSU(3) gauge fields

Continuum formulation Discrete formulation

from Gattringer, 
Lang (2010)

Wilson (1974)
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Wilson loops

Wilson action

Plaquette

Potential of static quark pair

from: Bali, Phys.Rept. 343:1 (2001) 

Symanzik improved clover action

from: Gattringer, Lang (2010)

Improved topological charge

from: Alexandrou et al., Eur.Phys.J.C 80 (2020) 5, 424

AI, Müller, Eur.Phys.J. C78 (2018) no.11, 884

Improved real-time 
lattice actions
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L-CNN data

Combine lattice links U 
and locally transforming objects W

Gauge transformation

from: Gattringer, Lang (2010)

Gauge equivariant (gauge covariant) function

Gauge invariant function
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Lattice gauge equivariant layers
Convolution (L-Conv) Bilinear layer (L-Bilin)

Convolution wish shared weights and proper parallel 
transport along coordinate axes

Trace layer

Multiply W at each lattice point Generate gauge invariant output
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Generic L-CNN

L-Conv: 
* convolution of parallel-transported W objects
* parallel transport only along coordinate axes

L-Bilin:
* bilinear layer, product of locally transforming objects

L-Act:
* activation functions multiply W objects by scalar, 
gauge-invariant functions

L-Exp:
* update link variables using exponential map

Trace:
* calculate gauge invariant trace

Plaq:
* generate all possible plaquettes

Poly:
* generate all possible Polyakov loops

Favoni, AI, Müller, Schuh,
Phys.Rev.Lett. 128 (2022) 032003 
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L-CNNs generate Wilson loops
U
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Number of traced Wilson loops covered by L-CNN 
architectures of various sizes in 1+1 D

Architectures differ in number of layers, kernel size, 
and number of channels.

Favoni, AI, Müller, Schuh, Phys.Rev.Lett. 128 (2022) 032003 
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Sketch of proof for arbitrary Wilson loops

(a) An arbitrary contractible Wilson loop of n tiles ...
(b) … is composed (L-Bilin) of a Wilson loop of (n-1) tiles …
(c) … and a parallel-transported (L-Conv) plaquette (Plaq).

Non-contractible loops (like Polyakov loops) have to be added (Poly). 

Favoni, AI, Müller, Schuh, Phys.Rev.Lett. 128 (2022) 032003 
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Numerical results

Regression task to learn value of 
rectangular Wilson loops:

1+1D

Lattice gauge equivariant CNN (L-CNNs, green) 
can learn the relation, while traditional 
convolutional neural networks (CNNs, black) 
struggle to find the solution.

Training on 8 × 8, testing from 8 × 8 up to 64 × 64

Compared best from:
100 L-CNN models (10 – 104 trainable parameters, up to 
4 L-Conv+L-Bilin)

2840 CNN models (100 – 105 trainable parameters up to 
6 layers, 512 channels, 4 activation functions)

Favoni, AI, Müller, Schuh, Phys.Rev.Lett. 128 (2022) 032003 
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Adversarial attacks

From Goodfellow, Shlens, Szegedy ICLR 2015

L-CNNs are insensitive to random or 
adversarial gauge transformations

Adversarial attack:

Favoni, AI, Müller, Schuh, Phys.Rev.Lett. 128 (2022) 032003 

https://arxiv.org/abs/1412.6572
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Fixed point action

Introduce a renormalization group transformation (RGT)

The effective action  is described

by infinitely many couplings

P. Hasenfratz, F. Niedermayer,
Nucl.Phys.B 414 (1994) 785

Large lattice 
artifacts

Critical slowing down, 
topological freezing

Blocking kernel

The fixed point is the saddle point 
in the classical limit             , 
which can be found by a 
minimization condition. 
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Blocking kernel 

Many possibilities to construct a blocking kernel manually, 
fit corresponding parameters.
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Learning the fixed point action with L-CNNs

Holland, AI, Müller, Wenger, in preparation

Training example: L-CNN model with
3 layers with 12, 24, 24 channels
and kernel size 2, 2, 1.

L-CNN superior to older parametrizations 
of FP action.
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Continuous formulation of L-CNNs

Define a continuous version of a gauge equivariant convolution:

 with kernel components

and parallel transporter

that map objects to new objects

in a gauge equivariant manner: 

Similarly define continuous bilinear 
layer, trace layer, …

Discretize this to obtain previous 
formulation.

Compatible with G-CNNs.

Generalizable to vectors and 
tensors.

Aronsson, Müller, Schuh, arxiv:2303.11448

https://arxiv.org/abs/2303.11448
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Summary

Daniel Schuh Matteo FavoniDavid Müller

“Upscaling Glasma simulations using machine learning”
Austrian Science Fund FWF No. P32446-N27

Glasma simulations

AI, Müller, Phys. Lett. B 771 (2017) 74 
Gelfand, AI, Müller, Phys. Rev. D94 (2016) no.1, 014020 

Open source: https://gitlab.com/openpixi/lge-cnn 

Translational equivariance L-CNNs

Favoni, AI, Müller, Schuh, 
Phys.Rev.Lett. 128 (2022) 032003 

Bulusu, Favoni, AI, Müller, Schuh, 
Phys. Rev. D 104 (2021) 074504

https://gitlab.com/openpixi/lge-cnn
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