
Deep generative models
A latent variable model perspective

51st SLAC Summer Institute

August 15, 2023

Gilles Louppe
g.louppe@uliege.be

1 / 49

mailto:g.louppe@uliege.be

Outline
1. Deep generative models

2. Variational auto-encoders

3. Diffusion models

4. Normalizing �ows

2 / 49

Deep generative models

2 / 49

Generative models

A (deep) generative model is a probabilistic model that can be used as a
simulator of the data.

Formally, a generative model de�nes a probability distribution over the
data , parameterized by .

pθ

p (x)θ

x ∈ X θ

3 / 49

Variational auto-encoders
(Kingma and Welling, 2013)

Diffusion models
(Midjourney, 2023)

4 / 49

―
Credits: Karsten et al, 2022; Siddharth Mishra-Sharma, 2023. 5 / 49

https://cvpr2022-tutorial-diffusion-models.github.io/
https://smsharma.io/iaifi-summer-school-2023/

Simulators

A simulator prescribes a generative model that can be used to simulate data .x

―
Credits: Siddharth Mishra-Sharma, 2023. 6 / 49

https://smsharma.io/iaifi-summer-school-2023/

Conditional simulators

A conditional simulator prescribes a way to sample from the likelihood ,
where is a set of conditioning variables or parameters.

p(x∣ϑ)
ϑ

―
Credits: Siddharth Mishra-Sharma, 2023. 7 / 49

https://smsharma.io/iaifi-summer-school-2023/

p(z ∣ϑ)p

8 / 49

p(z ∣ϑ) = p(z ∣ϑ)p(z ∣z)dzs ∫ p s p p

8 / 49

p(z ∣ϑ) = p(z ∣ϑ)p(z ∣z)p(z ∣z)dz dzd ∬ p s p d s p s

8 / 49

p(x∣ϑ) = p(z ∣ϑ)p(z ∣z)p(z ∣z)p(x∣z)dz dz dx∭ p s p d s d p s

8 / 49

Produce samples Evaluate densities Encode complex priors

What can we do with generative models?

x ∼ p(x∣ϑ) p(x∣ϑ)

p(ϑ∣x) =
p(x)

p(x∣ϑ)p(ϑ)

p(x)

―
Credits: Siddharth Mishra-Sharma, 2023. 9 / 49

https://smsharma.io/iaifi-summer-school-2023/

Variational auto-encoders

9 / 49

Latent variable model

Consider for now a prescribed latent variable model that relates a set of
observable variables to a set of unobserved variables .

The probabilistic model de�nes a joint probability distribution , which
decomposes as

x ∈ X z ∈ Z

p (x, z)θ

p (x, z) = p (x∣z)p(z).θ θ

10 / 49

11 / 49

How to �t a latent variable model?

θ∗ = arg p (x)
θ
max θ

= arg p (x∣z)p(z)dz
θ
max ∫ θ

= arg E p (x∣z) dz
θ
max p(z) [θ]

≈ arg p (x∣z)
θ
max

N

1

i=1

∑
N

θ i

12 / 49

How to �t a latent variable model?

The curse of dimensionality will lead to poor estimates of the expectation.

θ∗ = arg p (x)
θ
max θ

= arg p (x∣z)p(z)dz
θ
max ∫ θ

= arg E p (x∣z) dz
θ
max p(z) [θ]

≈ arg p (x∣z)
θ
max

N

1

i=1

∑
N

θ i

12 / 49

Variational inference

Let us instead consider a variational approach to �t the model parameters .

Using a variational distribution over the latent variables , we have

θ

q (z)ϕ z

log p (x)θ = logE p (x∣z)p(z) [θ]

= logEq (z)ϕ
[

q (z)ϕ

p (x∣z)p(z)θ]

≥ E log (ELBO(x; θ, ϕ))q (z)ϕ
[

q (z)ϕ

p (x∣z)p(z)θ]

= E log p (x∣z) − KL(q (z)∣∣p(z))q (z)ϕ
[θ] ϕ

13 / 49

Using the Bayes rule, we can also write

Therefore, .

ELBO(x; θ, ϕ) = E logq (z)ϕ
[

q (z)ϕ

p (x∣z)p(z)θ]

= E logq (z)ϕ
[

q (z)ϕ

p (x∣z)p(z)θ

p (x)θ

p (x)θ]

= E log p (x)q (z)ϕ
[

q (z)ϕ

p (z∣x)θ
θ]

= log p (x) − KL(q (z)∣∣p (z∣x)).θ ϕ θ

log p (x) = ELBO(x; θ, ϕ) + KL(q (z)∣∣p (z∣x))θ ϕ θ

14 / 49

Provided the KL gap remains small, the model parameters can now be
optimized by maximizing the ELBO,

θ , ϕ = arg ELBO(x; θ, ϕ).∗ ∗

θ,ϕ
max

15 / 49

So far we assumed a prescribed probabilistic model motivated by domain
knowledge. We will now directly learn a stochastic generating process
with a neural network.

We will also amortize the inference process by learning a second neural
network approximating the posterior, conditionally on the observed
data .

p (x∣z)θ

q (z∣x)ϕ

x

16 / 49

Variational auto-encoders

17 / 49

As before, we can use variational inference to jointly optimize the generative
and the inference networks parameters and :θ ϕ

θ , ϕ∗ ∗ = arg E ELBO(x; θ, ϕ)
θ,ϕ
max p(x) []

= arg E E [log]
θ,ϕ
max p(x) [q (z∣x)ϕ q (z∣x)ϕ

p (x∣z)p(z)θ]

= arg E E log p (x∣z) − KL(q (z∣x)∣∣p(z)) .
θ,ϕ
max p(x) [q (z∣x)ϕ

[θ] ϕ]

18 / 49

Step-by-step example

Consider as data the MNIST digit dataset:d

19 / 49

20 / 49

(Kingma and Welling, 2013)

21 / 49

A semantically meaningful latent space

The prior-matching term enforces simplicity in the latent
space, encouraging learned semantic structure and disentanglement.

KL(q (z∣x)∣∣p(z))ϕ

―
Credits: Siddharth Mishra-Sharma, 2023. 22 / 49

https://smsharma.io/iaifi-summer-school-2023/

Diffusion models

22 / 49

―
Credits: Kreis et al, 2022. 23 / 49

https://cvpr2022-tutorial-diffusion-models.github.io/

Markovian Hierarchical VAEs

24 / 49

Similarly to VAEs, training is done by maximizing the ELBO, using a variational
distribution over all levels of latent variables:q (z ∣x)ϕ 1:T

log p (x)θ ≥ E logq (z ∣x)ϕ 1:T [
q (z ∣x)ϕ 1:T

p(x, z)1:T]

25 / 49

Diffusion models

Diffusion models are Markovian HVAEs with the following constraints:

The latent dimension is the same as the data dimension.

The encoder is �xed to linear Gaussian transitions .

The hyper-parameters are set such that is a standard Gaussian.

q(x ∣x)t t−1

q(x ∣x)T 0

26 / 49

Forward diffusion process

With , we haveϵ ∼ N (0, I)

xt

q(x ∣x)t t−1

q(x ∣x)1:T 0

= x + ϵαt t−1 1 − αt

= N (x ; x , (1 − α)I)t αt t−1 t

= q(x ∣x)
t=1

∏
T

t t−1

―
Credits: Kreis et al, 2022. 27 / 49

https://cvpr2022-tutorial-diffusion-models.github.io/

―
Credits: Simon J.D. Prince, 2023. 28 / 49

https://udlbook.github.io/udlbook/

Reverse denoising process

with .

p(x)0:T

p(x)T

p (x ∣x)θ t−1 t

xt−1

= p(x) p (x ∣x)T

t=1

∏
T

θ t−1 t

= N (x ; 0, I)T

= N (x ;μ (x , t), σ (x , t)I)t−1 θ t θ
2

t

= μ (x , t) + σ (x , t)zθ t θ t

z ∼ N (0, I)

―
Credits: Kreis et al, 2022. 29 / 49

https://cvpr2022-tutorial-diffusion-models.github.io/

Training

For learning the parameters of the reverse process, we can form a variational
lower bound on the log-likelihood of the data as

θ

E log p (x) ≥ E log := Lq(x)0 [θ 0] q(x)q(x ∣x)0 1:T 0 [
q(x ∣x)1:T 0

p (x)θ 0:T]

30 / 49

This objective can be rewritten as

where

 can be interpreted as a reconstruction term.
It can be approximated and optimized using a Monte Carlo estimate.

 is a denoising
matching term. The transition provides a learning signal for
the reverse process, since it de�nes how to denoise the noisi�ed input
with access to the original input .

 represents how close the distribution of the
�nal noisi�ed input is to the standard Gaussian. It has no trainable
parameters.

L = E logq(x)q(x ∣x)0 1:T 0 [
q(x ∣x)1:T 0

p (x)θ 0:T]

= E L − L − Lq(x)0 [0
t>1

∑ t−1 T]

L = E [log p (x ∣x)]0 q(x ∣x)1 0 θ 0 1

L = E KL(q(x ∣x ,x)∣∣p (x ∣x))t−1 q(x ∣x)t 0 t−1 t 0 θ t−1 t

q(x ∣x ,x)t−1 t 0

xt

x0

L = KL(q(x ∣x)∣∣p (x))T T 0 θ T

31 / 49

(Some calculations later...)

31 / 49

Interpretation 1: Denoising. Training a diffusion model amounts to learning a
neural network that predicts the original ground truth from a noisy input

.

=

arg L
θ
min t−1

arg E ∣∣ (x , t) − x ∣∣
θ
min q(x ∣x)t 0 2σt

2
1

(1 −)ᾱt
2

(1 − α)ᾱt−1 t
2

x̂θ t 0 2
2

x0
xt

32 / 49

Interpration 2: Noise prediction. Training a diffusion model amounts to
learning a neural network that predicts the noise that was added to the
original ground truth to obtain the noisy .

=

≈

arg L
θ
min t−1

arg E ∣∣ϵ (, t) − ϵ∣∣
θ
min N (ϵ;0,I) 2σt

2
1
(1 −)αᾱt t

(1 − α)t 2
θ

xt

x + ϵᾱt 0 1 − ᾱt 2
2

arg E ∣∣ϵ (, t) − ϵ∣∣
θ
min N (ϵ;0,I) θ

xt

x + ϵᾱt 0 1 − ᾱt 2
2

ϵ

x0 xt

33 / 49

Interpretation 3: Denoising score matching. Training a diffusion model
amounts to learning a neural network that predicts the score

 of the tractable posterior.

=

arg L
θ
min t−1

arg E ∣∣s (x , t) − ∇ log q(x ∣x)∣∣
θ
min q(x ∣x)t 0 2σt

2

1
αt

(1 − α)t 2
θ t xt t 0 2

2

∇ log q(x ∣x)xt t 0

34 / 49

Network architectures

Diffusion models often use U-Net architectures with ResNet blocks and self-
attention layers to represent , or .(x , t)x̂θ t ϵ (x , t)θ t s (x , t)θ t

―
Credits: Kreis et al, 2022. 35 / 49

https://cvpr2022-tutorial-diffusion-models.github.io/

Continuous-time diffusion models

With , we can rewrite the forward process asβ = 1 − αt t

xt = x + N (0, I)αt t−1 1 − αt

= x + N (0, I)1 − βt t−1 βt

= x + N (0, I)1 − β(t)Δt t−1 β(t)Δt

―
Credits: Kreis et al, 2022. 36 / 49

https://cvpr2022-tutorial-diffusion-models.github.io/

When , we can further rewrite the forward process as

This last update rule corresponds to the Euler-Maruyama discretization of the
stochastic differential equation (SDE)

describing the diffusion in the in�nitesimal limit.

Δ → 0t

.
xt = x + N (0, I)1 − β(t)Δt t−1 β(t)Δt

≈ x − x + N (0, I)t−1 2
β(t)Δt

t−1 β(t)Δt

dx = − β(t)x dt + dwt 2
1

t β(t) t

37 / 49

The reverse process satis�es a reverse-time SDE that can be derived analytically
from the forward-time SDE and the score of the marginal distribution , asq(x)t

dx = − β(t)x − β(t)∇ log q(x) dt + dw .t [
2
1

t xt t] β(t) t

―
Credits: Song, 2021. 38 / 49

https://yang-song.net/blog/2021/score/

Normalizing �ows

39 / 49

Change of variables

Assume is a uniformly distributed unit cube in and .
Since the total probability mass must be conserved,

where represents the inverse determinant of the

linear transformation .

p(z) R3 x = f (z) = 2z

p(x = f (z)) = p(z) = p(z) ,
Vx

Vz

8
1

= det8
1

∣
∣
∣
∣
∣
∣

⎝

⎛2
0
0

0
2
0

0
0
2⎠

⎞

∣
∣
∣
∣
∣
∣−1

f

40 / 49

What if is non-linear?f

―
Image credits: Simon J.D. Prince, Understanding Deep Learning, 2023. 41 / 49

https://udlbook.github.io/udlbook/

Change of variables theorem

If is non-linear,

the Jacobian of represents the in�nitesimal linear
transformation in the neighborhood of ;

if the function is a bijective map, then the mass must be conserved locally.

Therefore, the local change of density yields

Similarly, for , we have

f

J (z)f x = f (z)
z

p(x = f (z)) = p(z) detJ (z) .∣ f ∣−1

g = f−1

p(x) = p(z = g(x)) detJ (x) .∣ g ∣

42 / 49

Example: coupling layers

Assume and . Then,

Forward mapping :

Inverse mapping :

where and are arbitrary neural networks.

z = (z , z)a b x = (x ,x)a b

x = f (z)

x = z , x = z ⊙ exp(s(z)) + t(z),a a b b a a

z = g(x)

z = x , z = (x − t(x)) ⊙ exp(−s(x)),a a b b a a

s t

43 / 49

For , the log-likelihood is

where the Jacobian is a lower triangular matrix

such that .

Therefore, the log-likelihood is

x = (x ,x)a b

log p(x) = log p(z) detJ (z)∣ f ∣−1

J (z) =f ∂z
∂x

,(
I

∂za

∂xb

0
diag(exp(s(z)))a

)

detJ (z) = exp(s(z)) = exp(s(z))∣ f ∣ ∏i a i ∑i a i

log p(x) = log p(z) − s(z)
i

∑ a i

44 / 49

Normalizing �ows

A normalizing �ow is a change of variable that transforms a base distribution
 into through a discrete sequence of invertible transformations.

f

p(z) p(x)

―
Image credits: Lilian Weng, 2018. 45 / 49

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models

Formally,

The change of variable theorem yields

z ∼ p(z)0

z = f (z), k = 1, ...,Kk k k−1

x = z = f ∘ ... ∘ f (z).K K 1 0

log p(x) = log p(z) − log detJ (z) .0

k=1

∑
K

∣ fk k−1 ∣

46 / 49

Normalizing �ows can �t complex multimodal discontinuous densities.

―
Image credits: Wehenkel and Louppe, 2019. 47 / 49

https://arxiv.org/abs/1908.05164

Replace the discrete sequence of
transformations with a neural ODE
with reversible dynamics such that

Continuous-time normalizing �ows

The instantaneous change of variable yields

z ∼ p(z)0

= f (z(t), t, θ)
dt

dz(t)

x = z(1) = z + f (z(t), t)dt.0 ∫
0

1

log p(x) = log p(z(0)) − Tr dt.∫
0

1

(
∂z(t)

∂f (z(t), t, θ)
)

―
Image credits: Grathwohl et al, 2018. 48 / 49

https://arxiv.org/abs/1810.01367

Probability �ow ODE

Back to diffusion: For any diffusion process, there exists a corresponding
deterministic process

whose trajectories share the same marginal densities .

Therefore, when is replaced by its approximation , the
probability �ow ODE becomes a special case of a neural ODE. In particular, it is
an example of continuous-time normalizing �ows!

dx = f(t,x) − g (t)∇ log p(x) dtt [t 2
1 2

xt t]

p(x)t

∇ log p(x)xt t s (x , t)θ t

―
Credits: Song, 2021. 49 / 49

https://yang-song.net/blog/2021/score/

The end.

49 / 49

