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Introduction



For HEP Front-End Chips:

Amplification – Shaping – Discrimination - Algorithms

In this worldview, the dividing line between analog and digital depends on what transistor regions

you care about - Digital really only cares about Saturation and Cutoff and Analog is forced to care

about Linear as well.

Precision vs. Repetition:

Timing Circuits

Timing circuits, do digital things, but they do so with such precision that it is hard to lump them in

with the rest of the digital world where very general statements can be made about transistor

sizes and, broadly speaking, the same digital circuit can, and is, used again and again.



• What? Amplifiers, Bias 

References

• How? Full-custom design 

from the transistor level

• What? Phase Locked Loops 

(PLLs), Delay locked Loops 

(DLLs), Data Converters, 

Drivers, High speed 

serializers

• How? A mixture of both Full-

custom and Semi-custom 

design styles

• What? Serializers, 

Deserializers, Data 

Concentrators, Algorithms, 

Zero Suppression, 

Readout Architectures

• How? Semi-custom design 

from standard cell libraries 

that are part of a Process 

Design Kit (PDK)
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When I started in this field, unquestionably, Analog ruled 

our world.  Digital was told how much (read: how little) 

room it could use.  Digital was told what metal layers it 

would be allowed to use.  

In the years since I started, the percentage of transistors 

and of chip area dedicated to pure digital has grown 

dramatically and it shows no signs of stopping.  
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The Three 
Pillars of 
Digital 
Design

RTL

Register Transfer Level

Verilog or SystemVerilog

Design

This is what you learned in your 

University classes.  This is 

usually what everyone things of 

when they think “digital design”

Digital

Design

R
T

L

V
e
ri
fi
c
a
ti
o
n

P
N

R



z

The Three 
Pillars of 
Digital 
Design

Verification

It is *NOT* just simulation

It is *NOT* just a *LOT* of simulations

It is a systematic, mathematical 

approach to design testing to cover as 

many aspects of a design as a group of 

engineers can possibly think of and (in 

certain versions) uses constrained 

randomization to (hopefully) reach 

corners the designers did not think of.
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The Three 
Pillars of 
Digital 
Design

PNR

Place-And-Route

Synthesis

Digital Layout

It is every bit as complex and 

comprehensive as full-custom 

layout in Analog Design, but it is 

completely different
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RTL-VRF-PNR Interaction

• Obviously, RTL must start first 

because it sets the functional goals 

of a projects.

• PNR must start first because it 

must set a realistic floorplan which, 

in turn, defines for RTL how sub-

modules will talk to one another

• Verification must start first because 

it sets the verification plan which 

determines the different 

testbenches that will be developed 

and these testbenches will allow 

the RTL to be tested for their 

functionality.

…BUT…

…BUT…

RTL

VRF

PNR
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RTL-VRF-PNR Interaction

• Verification needs RTL to finish first 

because Verification cannot possibly 

finish until the RTL is set in stone

• Verification is finding problems with 

the RTL, so if Verification is doing its 

job, the RTL is changing at the same 

time

• PNR needs RTL and Verification to 

stop messing with its scripts

• Verification needs PNR to be done 

first because it needs netlists and 

SDF files to do post-layout 

simulations which will, of course, 

further alter the RTL and then the 

PNR

…BUT…

…BUT…

…BUT…

RTL

VRF

PNR
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RTL-VRF-PNR Interaction

And, of course, 

EVERYBODY

needs the physicists 

to stop changing the 

damn 

specifications!!!
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Constant Feedback and Successive Approximation

In the end, what we have is a system of 

feedback and successive approximation.

1. In a perfect world, RTL, VRF, and PNR 

are NOT THE SAME PEOPLE.  

2. In a perfect world, everyone starts at 

approximately the same time.  At the 

very least everyone is aware of the 

actions of their digital teammates from 

the start.

3. RTL and VRF are in constant feedback.  

RTL feeds VRF verbal and written 

SPECIFICATIONS of functionality.  VRF 

feeds RTL a constant stream of bugs.  

Both must agree on a hierarchy and 

both must be involved in the verification 

plan.
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Constant Feedback and Successive Approximation

In the end, what we have is a system of 

feedback and successive approximation.

4. RTL and PNR are also in constant 

feedback.  RTL hierarchy is logical, but 

PNR hierarchy is physical.  It is a virtual 

certainty that RTL’s logic will be forced 

to give way to PNR’s practical 

limitations.  Later in the design process, 

RTL’s logic will again have to give way 

to PNR’s timing limitations.

5. The feedback from VRF to PNR is 

different.  VRF cannot possibly finish its 

job until it has a final netlist and SDF 

(delay information) from PNR and PNR’s 

modifications to hierarchy often force 

changes to VRF’s hierarchy.  Honestly, 

VRF is largely a pain in PNR’s neck as it 

pushes for netlists and SDF files.
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Digital Design in Extreme 
Environments
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TID Bibliography to get you started

▪ F. Faccio and G.Cervelli, IEEE Trans. Nucl. Science, Vol.52, N.6 (2005) 

pp.2413-2420 

▪ F. Faccio et al., IEEE Trans. Nucl. Science, Vol.62 , N.6 (2015)

▪ M. Menouni, VERTEX 2017, (testIrrad65 (cern.ch))

▪ F. Faccio, et al., TWEPP 2015, (TWEPP15_Faccio.key (cern.ch))

▪ L. T. Clark et al., IEEE Transactions on Nuclear Science, vol. 69, no. 12, 

pp. 2305-2313, (2022)

▪ H. Spieler, (Radtutr6.PDF (lbl.gov))

https://indico.cern.ch/event/627245/contributions/2676986/attachments/1523192/2380465/Vertex2017_TID_65nm.pdf
https://indico.cern.ch/event/442426/attachments/1168759/1686200/TWEPP15_Faccio.pdf
https://www-physics.lbl.gov/~spieler/radiation_effects/rad_tutor.pdf
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SEU Bibliography to get you started

▪ S. Kulis, JINST, Vol.12, N.1 (2017) DOI: 10.1088/1748-0221/12/01/C01082

▪ TMRG Tool - https://tmrg.web.cern.ch/tmrg/
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Taxonomy of Radiation Effects in Silicon Devices

As digital designers, we 

are most concerned with 

Total Ionizing Dose (TID) 

among the Cumulative 

Effects and Single Event 

Transients (SET) and 

Single Event Upsets 

(SEU) among the Single 

Event Effects (SEE).
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Taxonomy of Radiation Effects in Silicon Devices

By now, we are all familiar 

with this cartoon cross 

section of a field effect 

transistor.



z

Taxonomy of Radiation Effects in Silicon Devices

Radiation effects can be 

divided

▪ Between those caused by 

multiple interactions over 

time vs. those caused by a 

single interaction

▪ Between those that alter 

device models and those 

that affect data/states

▪ By WHERE your device 

was hit
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TID: What happens when a 
particle hits an oxide?

1. We generate particles through 

ionization

2. Under the influence of an electric field, 

particles drift, but mobility favors the 

electrons

3. The net effect is trapped charge in the 

oxide (and an increase in interface 

traps)

Generation

Drift

Trapped Charge
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TID: What happens when a 
LOT of particles hit an oxide?

1. Most significantly: Threshold voltage 

shifts for both nFETs and pFETs.

2. Reduction in drive current

3. Increase in leakage current

Net effect: Your models change

Generation

Drift

Trapped Charge
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TID: What does this mean to a digital 
designer?

Credit: S. Kulis, https://tmrg.web.cern.ch/tmrg/
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TID: What does this mean to a digital 
designer?

▪ With increasing dose, your devices slow down.

▪ With advanced technology nodes, the change in speed is 

somewhat more nuanced.  For example, at lower dosages 

(think Space radiation levels), the speed actually has been 

found to increase because the nFET gets quicker before 

the pFET dominates.  However, this is not significant for 

High Energy Physics.

▪ GOOD NEWS: With advanced nodes and reduced gate 

oxide thickness, it is harder to trap charge in the gate 

oxide, so we benefit from naturally improving TID 

resistance.

▪ GOOD NEWS: Many of the problems associated with 

leakage and drive current can be fixed by using transistors 

with larger gate widths and larger gate lengths

▪ BAD NEWS: Digital designers rarely get to choose their 

device dimensions
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SEE: What happens when a 
particle hits a depletion region?

1. Once again, we generate particles through 

ionization

2. The electric fields within the depletion region very 

quickly cause drift current, resulting in a spike in 

current. (10s of picoseconds)

3. After this initial spike, there is a comparatively long 

tail that results from diffusion current outside the 

depletion region. (nanosecond scale)

4. After the tail, the excess charge disappears.  It is an 

entirely transient phenomenon

The net result is the temporary deposition of charge on 

one of the nodes of your circuit

Generation

Drift

Diffusion and 

Recombination
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▪ Above is a classic 4T SRAM cell ignoring 

gating transistors

SEU: Single 
Event Upset
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SEU: Single 
Event Upset

▪ Let us assume that it is 

set such that the left 

node is a Logical 1 and 

the right node is a 

Logical 0

▪ In this configuration, the 

left node is being pulled 

high by the pFET of the 

lower inverter.

▪ The nFET sits in a substrate that is grounded. 

▪ The nFET is cut off

▪ The nFET’s drain is shorted to the pFET’s

drain and consequently, the depletion region 

below the nFET drain (highlighted) is back-

biased.
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SEU: Single 
Event Upset

▪ If an incident particle 

strikes that specific 

location, as was shown 

in a previous slide, 

charge will be deposited 

on that node.
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SEU: Single 
Event Upset

▪ The deposited charge 

can/will begin to pull the 

left node away from a 

perfect Logical 1

▪ How far it will pull away 

will depend on the nature 

and energy of the 

incident particle and the 

exact location of the 

strike
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SEU: Single 
Event Upset

▪ If the charge deposition 

is above a certain critical 

value, the positive 

feedback of the SRAM 

circuit will begin to assert 

itself.
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SEU: Single 
Event Upset

▪ The net result is a 

change in the state held 

by the SRAM

▪ A Single Event Upset can 

therefore be defined as a 

Single Event Effect in the 

presence of positive 

feedback that exceeds a 

critical charge deposition 

value.

▪ In the case of data in HEP systems, SEUs 

appear as noise in the data stream

▪ However, in the case of controls in HEP 

systems, SEUs can be severe.
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SET: Single Event 
Transients

▪ Every logical function – combinatorial or 

sequential – can be though to contain its 

function and an output driver.  That output 

driver can be temporarily pulled away 

from its expected value by an incident 

particle

▪ If the logical function is a clock tree, this 

can result in spurious or missing clock 

pulses.

▪ In other cases, downstream registering of 

results can also be thrown off
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What can we do about SEE?

▪ Chose a different technology (e.g. SOI)

▪ Typically, not up to the Digital Designer

▪ Increase the charge necessary to flip a node by increasing capacitance

▪ Typically, not up to the Digital Designer

▪ Store data on multiple nodes (DICE, SEUSS, Whitaker Cell)

▪ Heavily layout dependent and typically not available to the Digital Designer

▪ Encoding (Hamming, Reed-Solomon)

▪ Triple Modular Redundancy

Can be done with (relatively) 

simple RTL or PNR modifications



z TMR

Triplicated registers –

“SEU-only”

Full TMR

– SEU and SET

• TMR is currently the most 

common form of SEE 

mitigation (RD53, HGCAL 

(CMS), COLDATA (DUNE))

• As the name indicates, it 

consists of triplicating each 

register

• Simply voting on the 

triplicated register protects 

against Single Event 

Upsets

• Full Triplication or Full TMR 

also protects against SET.  

Triplicated  clocks protects 

against SET in the clock 

tree.  Triplicated logic and 

voting protects against SET 

in the data path.

Credit: S. Kulis, https://tmrg.web.cern.ch/tmrg/



z

TMR Insertion

1. “Sandeep Method” – TMR insertion after Synthesis 

1. HUGE Advantage! The RTL designer does not need to be aware 

that they are designing for extreme environments.  If you have the 

RTL, you can triplicate any IP.

2. Disadvantage – Not agile; full triplication is difficult

2. TMRG – TMR insertion after RTL

1. RTL designer is required to add pragmas to the RTL in order for 

TMRG to do its job

2. Complete agility and flexibility – full triplication; skip modules; etc.
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TMR Insertion with TMRG
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TMR Insertion with TMRG
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Design (RTL)
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RTL’s Mission:
Fail Gracefully and Obviously
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Failing Gracefully and Obviously

▪ Any knucklehead who has taken a SystemVerilog course can 

design a module that does what you ask it to do.  That’s the 

easy part.

▪ Failing Gracefully and Obviously - This is the hard part.

▪ What happens when the data comes too fast?

▪ What happens if your data is corrupted?

▪ What happens if your (corrupted) data is out of range?

▪ What happens when your control system is corrupted?

▪ How quickly can you sense that something is wrong?
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Failing Gracefully and Obviously

▪ Graceful Failure

1. It keeps going despite failures

2. It continuously restores itself

3. It self-checks

4. In the event of failure it returns to proper operation in a predictable 

fashion

▪ Obvious Failure

1. It flags errors

2. It notifies the backend of suspicious data
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Failing Gracefully and Obviously

▪ This is the hard part.

▪ Any knucklehead who has taken a SystemVerilog course can 

design a module that does what you ask it to do.  That’s the 

easy part.

▪ What happens when the data comes too fast?

▪ What happens if your data is corrupted?

▪ What happens if your (corrupted) data is out of range?

▪ What happens when your control system is corrupted?

▪ How quickly can you sense that something is wrong?

Here’s another complication: Oftentimes, the overriding 

question is “Do you care about corruption?”  As a 

general rule of thumb, we always care about corruption 

in control systems, but we frequently can ignore 

corruption in the data path.  Unfortunately, history has 

shown that everyone will quickly forget that distinction 

and before you know it, you are implementing SEU 

mitigation on every signal in the chip.  That costs 

significant power.  Part of your job is keeping everyone 

on-task and in-agreement on what does and what does 

not require mitigation.
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RTL Example: 
ECON-D

▪ The ECON’s are Endcap 

Concentrators within CMS’s 

High-Granularity Calorimeter 

(HGCAL) system

▪ Up to 12 HGCROC front end 

chips will feed each ECON

▪ Up to 6 1.28GHz outputs
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RTL Example: 
ECON-D

▪ Each HGCROC ships out a packet of 38 words plus a checksum delivered in a serial stream 

at 1.28GHz

▪ These packets will all be synchronized to one another

▪ Between packets, the HGCROCs send SYNC/IDLE Words
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RTL Example: 
ECON-D

▪ Our job as data concentrator is to produce an aggregate data frame
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RTL Example: ECON-D

▪ The basic job is easy

1. Capture each packet

2. Simple arithmetic manipulation of the channel data

3. Create the output packet header

4. Assemble the output packet

5. Drive the output packet
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RTL Example: ECON-D

▪ In an extreme environment, things are not so easy.  For 

example:

1. How can we be certain that a packet is starting? What do we do 

if one HGCROC packet is not aligned with the another's?

2. Radiation can corrupt the event, bunch and orbit numbers.  

How do we know what the right numbers are? How do we 

extract the right numbers?

3. We can control this with one main state machine.  What 

happens if radiation corrupts our state?



z How can we be certain that a packet is 
starting?

1. “Where is a packet?” is logically 

equivalent to “Where is it not 

NOT a packet?”

2. Sync Words in this design are all 

identical.  This provides 

redundant information that 

you can use to your 

advantage.

3. Solution: Find Sync Words 

independently for each eLink and 

see if all active eLinks agree.

1. Graceful Failure: They don’t ALL have to agree, set a 

threshold

2. Obvious Failure: Establish a Confidence Level based on 

the number of Sync Words each channel agrees upon



zI found a Sync 
Word! Who cares!?
1. I can reliably build a foundation 

for my state machine

2. Graceful Failure: if I am 

anywhere else in my state space 

and all of my Sync Word 

detectors are telling me that they 

just found another Sync Word, 

maybe I should be in the Home 

state.  

Set up a counter.  Set up a 

threshold.  Set up an internal 

reset back to the Home State.

3. Obvious Failure: Set up a status 

register to report if you ever reset 

yourself back to the Home state.



zI found a Sync 
Word! Who cares!?
Alternately:

1. Graceful Failure: if I am in my 

HOME state and all of my Sync 

Word detectors are telling me 

that this is NOT a Sync Word, 

maybe I missed a packet

Set up a counter.  Set up a 

threshold. 

2. Obvious Failure: Set up a status 

register to report if you missed 

packets.
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Packet Synchronization
▪ Again: redundant information 

that you can use to your 

advantage. The Hdr and Trl

fields are consistent.

1. Graceful Failure: They don’t ALL 

have to agree either, set a 

threshold

2. Obvious Failure: Establish another 

Confidence Level based on the 

number of Hdr and Trl fields each 

channel agrees upon

Present in all packet streams.  Failed 

synchronization or SEU might result in 

one or two corruptions, but the majority 

will agree that this is a Header Word
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Corrupted Data: How can you tell what 
ought to be correct?

▪ Each packet contains a Bx (bunch) 

number, an Event number and an Orbit 

number (EBO).

▪ They ought to all be the same, but 

extreme environments remove that 

security blanket.

▪ You have redundant information in that all 

active eLinks are supposed to have the 

same EBO numbers, but no eLink is any 

more or any less likely to be the victim of 

the extreme environment.

▪ What do you do?

Present in all packet streams.  Failed 

synchronization or SEU might result in 

one or two corruptions, but the majority 

will agree that this is a Header Word
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Vertical Reconstruction – TMR on Steroids

Should be the same in all packet streams

Perfect

Successful

Ambiguous

Failed
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Packet Synchronization
▪ Vertical Reconstruction can help you to 

recreate what is most likely the 

uncorrupted data.  It also lets you 

know how well you did at 

reconstructing the data

1. Graceful Failure: Failed or Ambiguous 

reconstruction allows you to flag 

suspect data and still keep going

2. Obvious Failure: Report the results of 

the vertical reconstruction within the 

output packet.  Report how well each 

eLink did at finding the reconstructed 

data

Present in all packet streams.  Failed 

synchronization or SEU might result in 

one or two corruptions, but the majority 

will agree that this is a Header Word



zWhat happens if 
radiation corrupts our 

state?

1. Sometimes you can define your 

states to advance like a Grey 

Code counter.  That way, if the 

next state differs from the last 

state by more than one bit, you 

can flag it.  That doesn’t work 

here because of the branching.

2. Alternately, you can keep 

redundant copies of the last 

state to see if it is allowable for 

the current state to be X when 

the last state was Y.

3. ALWAYS: fill out the state space 

in your state machines and 

make sure that there is path 

back to HOME that **WILL** 

happen.



zWhat happens if 
radiation corrupts our 

state?

1. Graceful Failure: ALWAYS fill 

out the entire state space in 

your state machines and make 

sure that there is path back to 

HOME that **WILL** happen 

PREDICTABLY.

2. Obvious Failure: Flag this when 

it happens
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Verification
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Types of Verification

▪ Functional Simulation

1. Testcase - You generate the stimulus and decide when it is injected 

into the RTL

2. Driver - You write the drivers or BFMs that do the injection of the 

stimulus based on a certain protocol

3. Monitor - You write the monitors that receive the output from the RTL

4. Model - You code a detailed reference model, a zero-time equivalent 

of the RTL, which produces a predicted result

5. Checkers - You write the checkers and scoreboard that compare the 

output from the RTL versus that from your reference model and 

declare Pass or Fail

Credit: A Gentle Introduction to Formal Verification - SystemVerilog.io

https://www.systemverilog.io/verification/gentle-introduction-to-formal-verification/
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Types of Verification

▪ Formal Verification - the act of proving or disproving the correctness of 

intended algorithms underlying a system with respect to a certain formal 

specification or property, using formal methods of mathematics

▪ SEU injection framework for radiation-tolerant ASICs, a formal verification 

approach

▪ Journal of Instrumentation

▪ 2023-02-01 | Journal article

▪ DOI: 10.1088/1748-0221/18/02/c02023

▪ Part of ISSN: 1748-0221

▪ CONTRIBUTORS: M. Lupi; A. Pulli

Credit: Formal verification - Wikipedia

https://en.wikipedia.org/wiki/Formal_verification


z

UVM – The Universal Verification 
Methodology
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UVM – The Universal Verification 
Methodology

▪ A standardized methodology for verifying integrated circuit 

designs

▪ A class library that brings automation to the SystemVerilog 

language such as sequences and data automation features 

(packing, copy, compare) etc., and unlike the previous 

methodologies (e.g. OVM, e) developed independently by the 

simulator vendors, is an Accellera standard with support from 

multiple vendors: Aldec, Cadence, Mentor Graphics, Synopsys, 

Xilinx Simulator(XSIM)



z

Constrained Random Verification

▪ Directed Tests –

1. Pick a scenario

2. Make it happen on the test bench

3. Check to see if it worked

4. Repeat

▪ Constrained Random

1. Randomize what test will be performed (reset, data-taking, start-up, etc)

2. Within reasonable constraints of the test, randomize the DUT’s configuration

3. Within reasonable constraints of the configuration, randomize the data coming 

into the DUT

4. Automate this and run until the computer network cries out for mercy
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Coverage –
Where “Randomization” becomes “Engineering”

▪ You are probably asking: How is Constrained Random any different from 

just running lots and lots of different scenarios?  The answer lies in 

coverage.

▪ What is Coverage?

▪ Toggle Coverage – Design activity; Did a particular bit flip?

▪ Code Coverage – How much of your RTL Code was tested?

▪ Functional Coverage – What features were tested?

▪ Keep doing tests until you are satisfied with the coverage.

▪ Toggle Coverage and Code Coverage is easy

▪ Functional Coverage is the big one and it is the playground in which Constrained 

Random does its work
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Coverage and Constrained 
Random Example

▪ In ECON-T the data words from the 

HGCROC consist of 4 Trigger Cell sums

▪ Recall:
ECON-T

The net result was that we 

were never seeing situations in 

which all the Trigger Cells were 

low or all the Trigger Cells were 

high – i.e. OUR COVERAGE 

WAS INCOMPLETE!!!

So, we adjusted the constraints 

so that we could get all low or 

all high.
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Coverage –
Where “Randomization” becomes “Engineering”

▪ With Constrained Randomization and Functional Coverage, simulation 

becomes verification.

▪ Verification is a systematic and mathematical approach to testing.

▪ The job becomes to uncover all the features of a design

▪ To figure out the phase space of the features

▪ To understand what features are mutually reliant and which ones are mutually 

exclusive

▪ To ferret out all those features that must happen and all those that cannot be 

allowed.
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Coverage –
Where “Randomization” becomes “Engineering”

▪ The best part of this is that you do not need any particular skills to be involved in 

coverage – i.e. the Verification Plan.

▪ We have divided the problem of Verification into Testbench Development (which requires 

a particular programming skillset) and Coverage Development (which does not).

▪ The physicists, the RTL guys, the DAQ system architects, etc can all be part of Coverage 

Development. 

▪ Better yet, they can all, also, be part of the Coverage Evaluation.  

▪ It used to be that they would ask us if the chip was ready and if it wasn’t, it was our fault.

▪ Now, they can ask, “How is the Coverage?” and , “Have you seen evidence of the issues 

that concern ME?”
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Place And Route
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Semi-Custom Digital 
Design Flow

▪ RTL : Behavioral  model of the circuit in SystemVerilog.

▪ Synthesis: RTL is mapped into a gate-level netlist. 

(SystemVerilog behavioral model to SystemVerilog structural 

model)

▪ Floor-planning: From the synthesized netlist, core area sizing, 

power planning, and pin assignment.

▪ Placement: Place Standard-cells  & Macro-cells (layouts). No 

overlap is allowed between any two cells.

▪ Clock-Tree Synthesis: Clock tree is designed after placement

▪ Routing : The metal  wires are used to connect the placed 

components

▪ Signoff: Make sure that the final structure meets the specified 

timing constraints
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Credit: S. Miryala, Presentation Title (stanford.edu)

https://indico.slac.stanford.edu/event/7215/contributions/3839/attachments/1920/4937/HEPIC_Traineeship_Seminar_2022_Shared.pdf
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Thanks for listening!


