
z

Digital Design
in

High Energy Physics

Jim Hoff (jimhoff@fnal.gov)

z

Outline

▪ Introduction

▪ Analog vs. Digital

▪ Three Pillars of Digital Design

▪ Digital Design in Extreme Environments

▪ Taxonomy of Radiation Effects

▪ Total Ionizing Dose

▪ Single Event Effects

▪ Design (RTL)

▪ Verification (VRF)

▪ Place-and-Route (PNR)

z

Introduction

For HEP Front-End Chips:

Amplification – Shaping – Discrimination - Algorithms

In this worldview, the dividing line between analog and digital depends on what transistor regions

you care about - Digital really only cares about Saturation and Cutoff and Analog is forced to care

about Linear as well.

Precision vs. Repetition:

Timing Circuits

Timing circuits, do digital things, but they do so with such precision that it is hard to lump them in

with the rest of the digital world where very general statements can be made about transistor

sizes and, broadly speaking, the same digital circuit can, and is, used again and again.

• What? Amplifiers, Bias

References

• How? Full-custom design

from the transistor level

• What? Phase Locked Loops

(PLLs), Delay locked Loops

(DLLs), Data Converters,

Drivers, High speed

serializers

• How? A mixture of both Full-

custom and Semi-custom

design styles

• What? Serializers,

Deserializers, Data

Concentrators, Algorithms,

Zero Suppression,

Readout Architectures

• How? Semi-custom design

from standard cell libraries

that are part of a Process

Design Kit (PDK)

• What? Amplifiers, Bias

References

• How? Full-custom design

from the transistor level

• What? Phase Locked Loops

(PLLs), Data Converters,

Drivers, High speed

serializers

• How? A mixture of both Full-

custom and Semi-custom

design styles

• What? Serializers,

Deserializers, Data

Concentrators, Algorithms,

Zero Suppression,

Readout Architectures

• How? Semi-custom design

from standard cell libraries

that are part of a Process

Design Kit (PDK)

When I started in this field, unquestionably, Analog ruled

our world. Digital was told how much (read: how little)

room it could use. Digital was told what metal layers it

would be allowed to use.

In the years since I started, the percentage of transistors

and of chip area dedicated to pure digital has grown

dramatically and it shows no signs of stopping.

• What? Amplifiers, Bias

References

• How? Full-custom design

from the transistor level

• What? Phase Locked Loops

(PLLs), Data Converters,

Drivers, High speed

serializers

• How? A mixture of both Full-

custom and Semi-custom

design styles

• What? Serializers,

Deserializers, Data

Concentrators, Algorithms,

Zero Suppression,

Readout Architectures

• How? Semi-custom design

from standard cell libraries

that are part of a Process

Design Kit (PDK)

When I started in this field, unquestionably, Analog ruled

our world. I was told how much (read: how little) room I

could use. I was told what metal layers I would be

allowed to use.

In the years since I started, the percentage of transistors

and of chip area dedicated to pure digital has grown

dramatically and it shows no signs of stopping.

z

The Three
Pillars of
Digital
Design

RTL

Verification

Place-and-Route

Digital

Design

R
T

L

V
e
ri
fi
c
a
ti
o
n

P
N

R

z

The Three
Pillars of
Digital
Design

RTL

Register Transfer Level

Verilog or SystemVerilog

Design

This is what you learned in your

University classes. This is

usually what everyone things of

when they think “digital design”

Digital

Design

R
T

L

V
e
ri
fi
c
a
ti
o
n

P
N

R

z

The Three
Pillars of
Digital
Design

Verification

It is *NOT* just simulation

It is *NOT* just a *LOT* of simulations

It is a systematic, mathematical

approach to design testing to cover as

many aspects of a design as a group of

engineers can possibly think of and (in

certain versions) uses constrained

randomization to (hopefully) reach

corners the designers did not think of.

Digital

Design

R
T

L

V
e
ri
fi
c
a
ti
o
n

P
N

R

z

The Three
Pillars of
Digital
Design

PNR

Place-And-Route

Synthesis

Digital Layout

It is every bit as complex and

comprehensive as full-custom

layout in Analog Design, but it is

completely different

Digital

Design

R
T

L

V
e
ri
fi
c
a
ti
o
n

P
N

R

z

RTL-VRF-PNR Interaction

• Obviously, RTL must start first

because it sets the functional goals

of a projects.

• PNR must start first because it

must set a realistic floorplan which,

in turn, defines for RTL how sub-

modules will talk to one another

• Verification must start first because

it sets the verification plan which

determines the different

testbenches that will be developed

and these testbenches will allow

the RTL to be tested for their

functionality.

…BUT…

…BUT…

RTL

VRF

PNR

z

RTL-VRF-PNR Interaction

• Verification needs RTL to finish first

because Verification cannot possibly

finish until the RTL is set in stone

• Verification is finding problems with

the RTL, so if Verification is doing its

job, the RTL is changing at the same

time

• PNR needs RTL and Verification to

stop messing with its scripts

• Verification needs PNR to be done

first because it needs netlists and

SDF files to do post-layout

simulations which will, of course,

further alter the RTL and then the

PNR

…BUT…

…BUT…

…BUT…

RTL

VRF

PNR

z

RTL-VRF-PNR Interaction

And, of course,

EVERYBODY

needs the physicists

to stop changing the

damn

specifications!!!

z

Constant Feedback and Successive Approximation

In the end, what we have is a system of

feedback and successive approximation.

1. In a perfect world, RTL, VRF, and PNR

are NOT THE SAME PEOPLE.

2. In a perfect world, everyone starts at

approximately the same time. At the

very least everyone is aware of the

actions of their digital teammates from

the start.

3. RTL and VRF are in constant feedback.

RTL feeds VRF verbal and written

SPECIFICATIONS of functionality. VRF

feeds RTL a constant stream of bugs.

Both must agree on a hierarchy and

both must be involved in the verification

plan.

z

Constant Feedback and Successive Approximation

In the end, what we have is a system of

feedback and successive approximation.

4. RTL and PNR are also in constant

feedback. RTL hierarchy is logical, but

PNR hierarchy is physical. It is a virtual

certainty that RTL’s logic will be forced

to give way to PNR’s practical

limitations. Later in the design process,

RTL’s logic will again have to give way

to PNR’s timing limitations.

5. The feedback from VRF to PNR is

different. VRF cannot possibly finish its

job until it has a final netlist and SDF

(delay information) from PNR and PNR’s

modifications to hierarchy often force

changes to VRF’s hierarchy. Honestly,

VRF is largely a pain in PNR’s neck as it

pushes for netlists and SDF files.

z

Digital Design in Extreme
Environments

z

TID Bibliography to get you started

▪ F. Faccio and G.Cervelli, IEEE Trans. Nucl. Science, Vol.52, N.6 (2005)

pp.2413-2420

▪ F. Faccio et al., IEEE Trans. Nucl. Science, Vol.62 , N.6 (2015)

▪ M. Menouni, VERTEX 2017, (testIrrad65 (cern.ch))

▪ F. Faccio, et al., TWEPP 2015, (TWEPP15_Faccio.key (cern.ch))

▪ L. T. Clark et al., IEEE Transactions on Nuclear Science, vol. 69, no. 12,

pp. 2305-2313, (2022)

▪ H. Spieler, (Radtutr6.PDF (lbl.gov))

https://indico.cern.ch/event/627245/contributions/2676986/attachments/1523192/2380465/Vertex2017_TID_65nm.pdf
https://indico.cern.ch/event/442426/attachments/1168759/1686200/TWEPP15_Faccio.pdf
https://www-physics.lbl.gov/~spieler/radiation_effects/rad_tutor.pdf

z

SEU Bibliography to get you started

▪ S. Kulis, JINST, Vol.12, N.1 (2017) DOI: 10.1088/1748-0221/12/01/C01082

▪ TMRG Tool - https://tmrg.web.cern.ch/tmrg/

z

Taxonomy of Radiation Effects in Silicon Devices

As digital designers, we

are most concerned with

Total Ionizing Dose (TID)

among the Cumulative

Effects and Single Event

Transients (SET) and

Single Event Upsets

(SEU) among the Single

Event Effects (SEE).

z

Taxonomy of Radiation Effects in Silicon Devices

By now, we are all familiar

with this cartoon cross

section of a field effect

transistor.

z

Taxonomy of Radiation Effects in Silicon Devices

Radiation effects can be

divided

▪ Between those caused by

multiple interactions over

time vs. those caused by a

single interaction

▪ Between those that alter

device models and those

that affect data/states

▪ By WHERE your device

was hit

z

TID: What happens when a
particle hits an oxide?

1. We generate particles through

ionization

2. Under the influence of an electric field,

particles drift, but mobility favors the

electrons

3. The net effect is trapped charge in the

oxide (and an increase in interface

traps)

Generation

Drift

Trapped Charge

z

TID: What happens when a
LOT of particles hit an oxide?

1. Most significantly: Threshold voltage

shifts for both nFETs and pFETs.

2. Reduction in drive current

3. Increase in leakage current

Net effect: Your models change

Generation

Drift

Trapped Charge

z

TID: What does this mean to a digital
designer?

Credit: S. Kulis, https://tmrg.web.cern.ch/tmrg/

z

TID: What does this mean to a digital
designer?

z

TID: What does this mean to a digital
designer?

z

TID: What does this mean to a digital
designer?

▪ With increasing dose, your devices slow down.

▪ With advanced technology nodes, the change in speed is

somewhat more nuanced. For example, at lower dosages

(think Space radiation levels), the speed actually has been

found to increase because the nFET gets quicker before

the pFET dominates. However, this is not significant for

High Energy Physics.

▪ GOOD NEWS: With advanced nodes and reduced gate

oxide thickness, it is harder to trap charge in the gate

oxide, so we benefit from naturally improving TID

resistance.

▪ GOOD NEWS: Many of the problems associated with

leakage and drive current can be fixed by using transistors

with larger gate widths and larger gate lengths

▪ BAD NEWS: Digital designers rarely get to choose their

device dimensions

z

SEE: What happens when a
particle hits a depletion region?

1. Once again, we generate particles through

ionization

2. The electric fields within the depletion region very

quickly cause drift current, resulting in a spike in

current. (10s of picoseconds)

3. After this initial spike, there is a comparatively long

tail that results from diffusion current outside the

depletion region. (nanosecond scale)

4. After the tail, the excess charge disappears. It is an

entirely transient phenomenon

The net result is the temporary deposition of charge on

one of the nodes of your circuit

Generation

Drift

Diffusion and

Recombination

z

▪ Above is a classic 4T SRAM cell ignoring

gating transistors

SEU: Single
Event Upset

z

SEU: Single
Event Upset

▪ Let us assume that it is

set such that the left

node is a Logical 1 and

the right node is a

Logical 0

▪ In this configuration, the

left node is being pulled

high by the pFET of the

lower inverter.

▪ The nFET sits in a substrate that is grounded.

▪ The nFET is cut off

▪ The nFET’s drain is shorted to the pFET’s

drain and consequently, the depletion region

below the nFET drain (highlighted) is back-

biased.

z

SEU: Single
Event Upset

▪ If an incident particle

strikes that specific

location, as was shown

in a previous slide,

charge will be deposited

on that node.

z

SEU: Single
Event Upset

▪ The deposited charge

can/will begin to pull the

left node away from a

perfect Logical 1

▪ How far it will pull away

will depend on the nature

and energy of the

incident particle and the

exact location of the

strike

z

SEU: Single
Event Upset

▪ If the charge deposition

is above a certain critical

value, the positive

feedback of the SRAM

circuit will begin to assert

itself.

z

SEU: Single
Event Upset

▪ The net result is a

change in the state held

by the SRAM

▪ A Single Event Upset can

therefore be defined as a

Single Event Effect in the

presence of positive

feedback that exceeds a

critical charge deposition

value.

▪ In the case of data in HEP systems, SEUs

appear as noise in the data stream

▪ However, in the case of controls in HEP

systems, SEUs can be severe.

z

SET: Single Event
Transients

▪ Every logical function – combinatorial or

sequential – can be though to contain its

function and an output driver. That output

driver can be temporarily pulled away

from its expected value by an incident

particle

▪ If the logical function is a clock tree, this

can result in spurious or missing clock

pulses.

▪ In other cases, downstream registering of

results can also be thrown off

z

What can we do about SEE?

▪ Chose a different technology (e.g. SOI)

▪ Typically, not up to the Digital Designer

▪ Increase the charge necessary to flip a node by increasing capacitance

▪ Typically, not up to the Digital Designer

▪ Store data on multiple nodes (DICE, SEUSS, Whitaker Cell)

▪ Heavily layout dependent and typically not available to the Digital Designer

▪ Encoding (Hamming, Reed-Solomon)

▪ Triple Modular Redundancy

Can be done with (relatively)

simple RTL or PNR modifications

z TMR

Triplicated registers –

“SEU-only”

Full TMR

– SEU and SET

• TMR is currently the most

common form of SEE

mitigation (RD53, HGCAL

(CMS), COLDATA (DUNE))

• As the name indicates, it

consists of triplicating each

register

• Simply voting on the

triplicated register protects

against Single Event

Upsets

• Full Triplication or Full TMR

also protects against SET.

Triplicated clocks protects

against SET in the clock

tree. Triplicated logic and

voting protects against SET

in the data path.

Credit: S. Kulis, https://tmrg.web.cern.ch/tmrg/

z

TMR Insertion

1. “Sandeep Method” – TMR insertion after Synthesis

1. HUGE Advantage! The RTL designer does not need to be aware

that they are designing for extreme environments. If you have the

RTL, you can triplicate any IP.

2. Disadvantage – Not agile; full triplication is difficult

2. TMRG – TMR insertion after RTL

1. RTL designer is required to add pragmas to the RTL in order for

TMRG to do its job

2. Complete agility and flexibility – full triplication; skip modules; etc.

z

TMR Insertion with TMRG

z

TMR Insertion with TMRG

z

Design (RTL)

z

RTL’s Mission:
Fail Gracefully and Obviously

z

Failing Gracefully and Obviously

▪ Any knucklehead who has taken a SystemVerilog course can

design a module that does what you ask it to do. That’s the

easy part.

▪ Failing Gracefully and Obviously - This is the hard part.

▪ What happens when the data comes too fast?

▪ What happens if your data is corrupted?

▪ What happens if your (corrupted) data is out of range?

▪ What happens when your control system is corrupted?

▪ How quickly can you sense that something is wrong?

z

Failing Gracefully and Obviously

▪ Graceful Failure

1. It keeps going despite failures

2. It continuously restores itself

3. It self-checks

4. In the event of failure it returns to proper operation in a predictable

fashion

▪ Obvious Failure

1. It flags errors

2. It notifies the backend of suspicious data

z

Failing Gracefully and Obviously

▪ This is the hard part.

▪ Any knucklehead who has taken a SystemVerilog course can

design a module that does what you ask it to do. That’s the

easy part.

▪ What happens when the data comes too fast?

▪ What happens if your data is corrupted?

▪ What happens if your (corrupted) data is out of range?

▪ What happens when your control system is corrupted?

▪ How quickly can you sense that something is wrong?

Here’s another complication: Oftentimes, the overriding

question is “Do you care about corruption?” As a

general rule of thumb, we always care about corruption

in control systems, but we frequently can ignore

corruption in the data path. Unfortunately, history has

shown that everyone will quickly forget that distinction

and before you know it, you are implementing SEU

mitigation on every signal in the chip. That costs

significant power. Part of your job is keeping everyone

on-task and in-agreement on what does and what does

not require mitigation.

z

RTL Example:
ECON-D

▪ The ECON’s are Endcap

Concentrators within CMS’s

High-Granularity Calorimeter

(HGCAL) system

▪ Up to 12 HGCROC front end

chips will feed each ECON

▪ Up to 6 1.28GHz outputs

z

RTL Example:
ECON-D

▪ Each HGCROC ships out a packet of 38 words plus a checksum delivered in a serial stream

at 1.28GHz

▪ These packets will all be synchronized to one another

▪ Between packets, the HGCROCs send SYNC/IDLE Words

z

RTL Example:
ECON-D

▪ Our job as data concentrator is to produce an aggregate data frame

z

RTL Example: ECON-D

▪ The basic job is easy

1. Capture each packet

2. Simple arithmetic manipulation of the channel data

3. Create the output packet header

4. Assemble the output packet

5. Drive the output packet

z

RTL Example: ECON-D

▪ In an extreme environment, things are not so easy. For

example:

1. How can we be certain that a packet is starting? What do we do

if one HGCROC packet is not aligned with the another's?

2. Radiation can corrupt the event, bunch and orbit numbers.

How do we know what the right numbers are? How do we

extract the right numbers?

3. We can control this with one main state machine. What

happens if radiation corrupts our state?

z How can we be certain that a packet is
starting?

1. “Where is a packet?” is logically

equivalent to “Where is it not

NOT a packet?”

2. Sync Words in this design are all

identical. This provides

redundant information that

you can use to your

advantage.

3. Solution: Find Sync Words

independently for each eLink and

see if all active eLinks agree.

1. Graceful Failure: They don’t ALL have to agree, set a

threshold

2. Obvious Failure: Establish a Confidence Level based on

the number of Sync Words each channel agrees upon

zI found a Sync
Word! Who cares!?
1. I can reliably build a foundation

for my state machine

2. Graceful Failure: if I am

anywhere else in my state space

and all of my Sync Word

detectors are telling me that they

just found another Sync Word,

maybe I should be in the Home

state.

Set up a counter. Set up a

threshold. Set up an internal

reset back to the Home State.

3. Obvious Failure: Set up a status

register to report if you ever reset

yourself back to the Home state.

zI found a Sync
Word! Who cares!?
Alternately:

1. Graceful Failure: if I am in my

HOME state and all of my Sync

Word detectors are telling me

that this is NOT a Sync Word,

maybe I missed a packet

Set up a counter. Set up a

threshold.

2. Obvious Failure: Set up a status

register to report if you missed

packets.

z

Packet Synchronization
▪ Again: redundant information

that you can use to your

advantage. The Hdr and Trl

fields are consistent.

1. Graceful Failure: They don’t ALL

have to agree either, set a

threshold

2. Obvious Failure: Establish another

Confidence Level based on the

number of Hdr and Trl fields each

channel agrees upon

Present in all packet streams. Failed

synchronization or SEU might result in

one or two corruptions, but the majority

will agree that this is a Header Word

z

Corrupted Data: How can you tell what
ought to be correct?

▪ Each packet contains a Bx (bunch)

number, an Event number and an Orbit

number (EBO).

▪ They ought to all be the same, but

extreme environments remove that

security blanket.

▪ You have redundant information in that all

active eLinks are supposed to have the

same EBO numbers, but no eLink is any

more or any less likely to be the victim of

the extreme environment.

▪ What do you do?

Present in all packet streams. Failed

synchronization or SEU might result in

one or two corruptions, but the majority

will agree that this is a Header Word

z

Vertical Reconstruction – TMR on Steroids

Should be the same in all packet streams

Perfect

Successful

Ambiguous

Failed

z

Packet Synchronization
▪ Vertical Reconstruction can help you to

recreate what is most likely the

uncorrupted data. It also lets you

know how well you did at

reconstructing the data

1. Graceful Failure: Failed or Ambiguous

reconstruction allows you to flag

suspect data and still keep going

2. Obvious Failure: Report the results of

the vertical reconstruction within the

output packet. Report how well each

eLink did at finding the reconstructed

data

Present in all packet streams. Failed

synchronization or SEU might result in

one or two corruptions, but the majority

will agree that this is a Header Word

zWhat happens if
radiation corrupts our

state?

1. Sometimes you can define your

states to advance like a Grey

Code counter. That way, if the

next state differs from the last

state by more than one bit, you

can flag it. That doesn’t work

here because of the branching.

2. Alternately, you can keep

redundant copies of the last

state to see if it is allowable for

the current state to be X when

the last state was Y.

3. ALWAYS: fill out the state space

in your state machines and

make sure that there is path

back to HOME that **WILL**

happen.

zWhat happens if
radiation corrupts our

state?

1. Graceful Failure: ALWAYS fill

out the entire state space in

your state machines and make

sure that there is path back to

HOME that **WILL** happen

PREDICTABLY.

2. Obvious Failure: Flag this when

it happens

z

Verification

z

Types of Verification

▪ Functional Simulation

1. Testcase - You generate the stimulus and decide when it is injected

into the RTL

2. Driver - You write the drivers or BFMs that do the injection of the

stimulus based on a certain protocol

3. Monitor - You write the monitors that receive the output from the RTL

4. Model - You code a detailed reference model, a zero-time equivalent

of the RTL, which produces a predicted result

5. Checkers - You write the checkers and scoreboard that compare the

output from the RTL versus that from your reference model and

declare Pass or Fail

Credit: A Gentle Introduction to Formal Verification - SystemVerilog.io

https://www.systemverilog.io/verification/gentle-introduction-to-formal-verification/

z

Types of Verification

▪ Formal Verification - the act of proving or disproving the correctness of

intended algorithms underlying a system with respect to a certain formal

specification or property, using formal methods of mathematics

▪ SEU injection framework for radiation-tolerant ASICs, a formal verification

approach

▪ Journal of Instrumentation

▪ 2023-02-01 | Journal article

▪ DOI: 10.1088/1748-0221/18/02/c02023

▪ Part of ISSN: 1748-0221

▪ CONTRIBUTORS: M. Lupi; A. Pulli

Credit: Formal verification - Wikipedia

https://en.wikipedia.org/wiki/Formal_verification

z

UVM – The Universal Verification
Methodology

z

UVM – The Universal Verification
Methodology

▪ A standardized methodology for verifying integrated circuit

designs

▪ A class library that brings automation to the SystemVerilog

language such as sequences and data automation features

(packing, copy, compare) etc., and unlike the previous

methodologies (e.g. OVM, e) developed independently by the

simulator vendors, is an Accellera standard with support from

multiple vendors: Aldec, Cadence, Mentor Graphics, Synopsys,

Xilinx Simulator(XSIM)

z

Constrained Random Verification

▪ Directed Tests –

1. Pick a scenario

2. Make it happen on the test bench

3. Check to see if it worked

4. Repeat

▪ Constrained Random

1. Randomize what test will be performed (reset, data-taking, start-up, etc)

2. Within reasonable constraints of the test, randomize the DUT’s configuration

3. Within reasonable constraints of the configuration, randomize the data coming

into the DUT

4. Automate this and run until the computer network cries out for mercy

z

Coverage –
Where “Randomization” becomes “Engineering”

▪ You are probably asking: How is Constrained Random any different from

just running lots and lots of different scenarios? The answer lies in

coverage.

▪ What is Coverage?

▪ Toggle Coverage – Design activity; Did a particular bit flip?

▪ Code Coverage – How much of your RTL Code was tested?

▪ Functional Coverage – What features were tested?

▪ Keep doing tests until you are satisfied with the coverage.

▪ Toggle Coverage and Code Coverage is easy

▪ Functional Coverage is the big one and it is the playground in which Constrained

Random does its work

z

Coverage and Constrained
Random Example

▪ In ECON-T the data words from the

HGCROC consist of 4 Trigger Cell sums

▪ Recall:
ECON-T

The net result was that we

were never seeing situations in

which all the Trigger Cells were

low or all the Trigger Cells were

high – i.e. OUR COVERAGE

WAS INCOMPLETE!!!

So, we adjusted the constraints

so that we could get all low or

all high.

z

Coverage –
Where “Randomization” becomes “Engineering”

▪ With Constrained Randomization and Functional Coverage, simulation

becomes verification.

▪ Verification is a systematic and mathematical approach to testing.

▪ The job becomes to uncover all the features of a design

▪ To figure out the phase space of the features

▪ To understand what features are mutually reliant and which ones are mutually

exclusive

▪ To ferret out all those features that must happen and all those that cannot be

allowed.

z

Coverage –
Where “Randomization” becomes “Engineering”

▪ The best part of this is that you do not need any particular skills to be involved in

coverage – i.e. the Verification Plan.

▪ We have divided the problem of Verification into Testbench Development (which requires

a particular programming skillset) and Coverage Development (which does not).

▪ The physicists, the RTL guys, the DAQ system architects, etc can all be part of Coverage

Development.

▪ Better yet, they can all, also, be part of the Coverage Evaluation.

▪ It used to be that they would ask us if the chip was ready and if it wasn’t, it was our fault.

▪ Now, they can ask, “How is the Coverage?” and , “Have you seen evidence of the issues

that concern ME?”

z

Place And Route

z

Semi-Custom Digital
Design Flow

▪ RTL : Behavioral model of the circuit in SystemVerilog.

▪ Synthesis: RTL is mapped into a gate-level netlist.

(SystemVerilog behavioral model to SystemVerilog structural

model)

▪ Floor-planning: From the synthesized netlist, core area sizing,

power planning, and pin assignment.

▪ Placement: Place Standard-cells & Macro-cells (layouts). No

overlap is allowed between any two cells.

▪ Clock-Tree Synthesis: Clock tree is designed after placement

▪ Routing : The metal wires are used to connect the placed

components

▪ Signoff: Make sure that the final structure meets the specified

timing constraints

RTL

Synthesis

(Genus)

Floor-planning/

Placement

Clock-Tree

Synthesis

Routing

Signoff

z

Semi-Custom Digital
Design Flow

▪ RTL : Behavioral model of the circuit in SystemVerilog.

▪ Synthesis: RTL is mapped into a gate-level netlist.

(SystemVerilog behavioral model to SystemVerilog structural

model)

▪ Floor-planning: From the synthesized netlist, core area sizing,

power planning, and pin assignment.

▪ Placement: Place Standard-cells & Macro-cells (layouts). No

overlap is allowed between any two cells.

▪ Clock-Tree Synthesis: Clock tree is designed after placement

▪ Routing : The metal wires are used to connect the placed

components

▪ Signoff: Make sure that the final structure meets the specified

timing constraints

RTL

Synthesis

(Genus)

Floor-planning/

Placement

Clock-Tree

Synthesis

Routing

Signoff

Credit: S. Miryala, Presentation Title (stanford.edu)

https://indico.slac.stanford.edu/event/7215/contributions/3839/attachments/1920/4937/HEPIC_Traineeship_Seminar_2022_Shared.pdf

z

Thanks for listening!

