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● Introduction

○ Ultra high-energy neutrino astronomy

○ The ARIANNA experiment

○ Deep learning

● Project 1: Real-time deep learning filter implementation

● Project 2: Improving offline analysis techniques with deep learning

Outline

Astrid Anker 2



Messengers:

● EM waves

● Gravitational waves

● High-energy particles

● Neutrinos

Multi-Messenger Astronomy
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quantamagazine.org/neutrinos-linked-with-cosmic-source-for-the-first-time-20180712/



Cosmic Ray Energy Spectrum
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Ultra High Energy   >= 

G. Di Sciascio arXiv:2202.11618

https://arxiv.org/abs/2202.11618


Cosmic Ray Energy Spectrum
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Extreme High Energy   >= 

GZK Mechanism

G. Di Sciascio arXiv:2202.11618

https://arxiv.org/abs/2202.11618
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Radio Detection of Neutrinos in Ice
The Askaryan effect

● Askaryan emission occurs in ice when excess 

charge builds on the shower front, producing 

coherent radio Cherenkov emmission
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Radio Detection of Neutrinos in Ice
The Askaryan effect

● Askaryan emission occurs in ice when excess 

charge builds on the shower front, producing 

coherent radio Cherenkov emmission

● First observed in ice here at SLAC!
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ANITA collaboration arXiv:hep-ex/0611008

https://arxiv.org/abs/hep-ex/0611008
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ARIANNA Detector

● An array of autonomous stations

● Powered by solar ( 5 watts )

● Detectors can be sensitive to both neutrinos and 

cosmic rays, depending on antenna orientation

● Collected data is transmitted to UCI over 

satellite

● Pilot stage has ended, and working on a large 

scale proposal
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ARIANNA Detector

● Consists of 4 (or 8) LPDA antennas

● Buried 3m below the ice surface

● 2 sets of parallel antennas

● Uses a 2 of 4 majority triggering logic

● Thresholds set by the factor of signal-to-noise 

ratio (SNR), ex: 4.4 SNR is 4.4 x VRMS

● Equates to an event rate of ~ 10^-3 Hz 

➔ This constraint is due to Iridium communications 

transmission rate
Downward-facing LPDAs



ARIANNA Detector
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Deep Learning

Deep 
Learning

Noise

Signal
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(s1, s2, s3, s4,....)
(s, s, s, s,......)

(n1, n2, n3, n4,....)
(n, n, n, n,......)



Deep Learning

Deep 
Learning Signal
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Unlabeled



Deep Learning
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Fully connected neural network (FCNN)



Deep Learning
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Fully connected neural network (FCNN) Convolutional neural network (CNN)

Data Kernel

Result of 
Convolution



Real-time Deep Learning Filter Implementation

Astrid Anker 12Journal of Instrumentation, DOI: 10.1088/1748-0221/17/03/P03007 

Project 1

Goal: improve the neutrino sensitivity of the ARIANNA detector
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Project 1

Goal: improve the neutrino sensitivity of the ARIANNA detector

● Current trigger threshold of 4.4 SNR gives a data rate of 10^-3 Hz 

● Lowering the trigger thresholds to our target of 3.6 SNR gives a new data rate of 100 Hz

● The transmission of data is constrained to 10^-3 Hz

● To get from 100 Hz to a 10^-3 Hz, we need 5 orders-of-magnitude noise rejection and still require 

95+% signal efficiency

● Need to improve the sensitivity with the given resources and constraints we have

Journal of Instrumentation, DOI: 10.1088/1748-0221/17/03/P03007 



Real-time Deep Learning Filter Implementation
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Project 1

Goal: reduce the trigger thresholds, which increases our ability to measure neutrinos

➔ This would increase the sensitivity of the detector by almost a factor of two

Journal of Instrumentation, DOI: 10.1088/1748-0221/17/03/P03007 



Real-time Deep Learning Filter Implementation
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Project 1

Goal: reduce the trigger thresholds, which increases our ability to measure neutrinos

➔ This would increase the sensitivity of the detector by almost a factor of two

Constraints:

➔ Data transmission rate

◆ From 4.4 to 3.6 SNR, the trigger rate increases from 10^-3 Hz  to 100 Hz

◆ This requires a noise reduction factor of 10^5

➔ Deep learning filter rate

◆ Requires incoming data to be processed/classified at a rate above 1 kHz to limit deadtime

Journal of Instrumentation, DOI: 10.1088/1748-0221/17/03/P03007 



Real-time Deep Learning Filter Implementation
Goal: reduce the trigger thresholds, which increases our ability to measure neutrinos

➔ This would increase the sensitivity of the detector by almost a factor of two

Constraints:

➔ Data transmission rate

◆ From 4.4 to 3.6 SNR, the trigger rate increases from 10^-3 Hz  to 100 Hz

◆ This requires a noise reduction factor of 10^5

➔ Deep learning filter rate

◆ Requires incoming data to be processed/classified at a rate above 1 kHz to limit deadtime

Steps:

➔ Generate simulated data

➔ Train an efficient but small network

➔ Implement DL on ARIANNA hardware

➔ Lab test validation

➔ Ongoing work
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Project 1

Journal of Instrumentation, DOI: 10.1088/1748-0221/17/03/P03007 



Simulations
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● Generated with NuRadioMC 

(Monte Carlo)

○ The signal set contains a full 

neutrino spectrum 

○ The noise set contains thermal 

noise events

● Trigger thresholds lowered from 4.4 

SNR to 3.6 SNR (increases trigger 

rate by 10^5)

Neutrino 
signal 
event

Thermal 
noise 
event
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● Generated with NuRadioMC 

(Monte Carlo)

○ The signal set contains a full 

neutrino spectrum 

○ The noise set contains thermal 

noise events

● Trigger thresholds lowered from 4.4 

SNR to 3.6 SNR (increases trigger 

rate by 10^5)

Neutrino 
signal 
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Thermal 
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Minimizing the Network Size

● Decrease size of the network structure● Decrease input data size
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model FLOPs MBED

CNN 100 samples ~ 10k 3.7 ms | 270 Hz

CNN 256 samples ~ 27k 9.4 ms | 106 Hz



Network Efficiency
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● Target efficiency: >95% signal efficiency for at least 10^5 noise rejection
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● Target efficiency: >95% signal efficiency for at least 10^5 noise rejection



Network Efficiency
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model Processing rate

CNN: 512 samples 50 Hz

FCNN: 512 samples 22 Hz

FCNN: 100 samples 212 Hz

CNN: 100 samples 270 Hz

● Goal: >95% signal efficiency for at least 10^5 noise rejection

● Target processing time: below 1 ms (1 kHz)



Implementation of Deep Learning Filter
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● Trained the CNN ahead of time and extracted 

trained weights and biases

● Manually wrote data formatting and matrix 

multiplication code within the MBED software
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Lab Verification

Goal: compare network output values for simulated and experimental 

data
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Lab Verification

Goal: compare network output values for simulated and 

experimental data

● Measured signal data:

○ Neutrino template generated and programmed into 

pulse generator

○ Pulse generator output fed into amplifiers and then 

ARIANNA hardware

● Measured noise data:

○ Produced via the amplifiers

● Simulated signal is generated with the neutrino template and 

simulated thermal noise is also generated
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Lab Verification

Goal: compare network output values for simulated and 

experimental data

● The network outputs for simulated and measured signal  

and noise agree well

● Simulations accurately describe experimental data

● Noise rejection factor and signal efficiency found with 

simulations earlier are credible

➔ Did not achieve a processing rate of 1 kHz



Ongoing work
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A deep learning filter will be added to the next 
generation of ARIANNA detectors

➔ Microprocessor will be upgraded
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A deep learning filter will be added to the next 
generation of ARIANNA detectors

➔ Microprocessor will be upgraded

◆ Power consumption studies

Solar Powered Detector

MBED Raspberry Pi

~ 0.3 W ~ 1 W

3.7 ms | 270 Hz 0.39 ms | 2.5 kHz



Ongoing work
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A deep learning filter will be added to the next 
generation of ARIANNA detectors

➔ Microprocessor will be upgraded

◆ Power consumption studies

◆ Cold testing

Solar Powered Detector

MBED Raspberry Pi

~ 0.3 W ~ 1 W

3.7 ms | 270 Hz 0.39 ms | 2.5 kHz

Thermal Chamber (-60c)



Ongoing work
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A deep learning filter will be added to the next 
generation of ARIANNA detectors

➔ Microprocessor will be upgraded

◆ Power consumption studies

◆ Cold testing

◆ Implementation onto ARIANNA board

◆ Robustness studies

MBED Raspberry Pi

~ 0.3 W ~ 1 W

3.7 ms | 270 Hz 0.39 ms | 2.5 kHz



Improving Offline Analysis Techniques with Deep Learning
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Project 2

Goal: Improve neutrino search techniques on experimental ARIANNA data with deep learning

➔ Using recently acquired station 61 (neutrino configuration)

➔ Want to reject all experimental data since it does not contain neutrinos

Paper in preparation 
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Project 2

Goal: Improve neutrino search techniques on experimental ARIANNA data with deep learning

➔ Using recently acquired station 61 (neutrino configuration)

➔ Want to reject all experimental data since it does not contain neutrinos

➔ Experimental background consist of wind, BMU, and thermal noise
➔ We have no experimental neutrino signal

◆ Train a network on experimental station 61 background and simulated neutrino signal

Paper in preparation 

*Not simulatable
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Goal: Improve neutrino search techniques on experimental ARIANNA data with deep learning

➔ Using recently acquired station 61 (neutrino configuration)

➔ Want to reject all experimental data since it does not contain neutrinos

➔ Experimental background consist of wind, BMU, and thermal noise
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◆ Train a network on experimental station 61 background and simulated neutrino signal

➔ Potential issues include the network training on artifacts of the simulated/measured data

Paper in preparation 
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Project 2

Goal: Improve neutrino search techniques on experimental ARIANNA data with deep learning

➔ Using recently acquired station 61 (neutrino configuration)

➔ Want to reject all experimental data since it does not contain neutrinos

➔ Experimental background consist of wind, BMU, and thermal noise
➔ We have no experimental neutrino signal

◆ Train a network on experimental station 61 background and simulated neutrino signal

➔ Potential issues include the network training on artifacts of the simulated/measured data

➔ A solution is to use experimental ARIANNA cosmic ray signal data as a check for potential 

artifacts 

◆ Using station 52 data (cosmic ray configuration)

Paper in preparation 

*Not simulatable



Data sets
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Neutrino station 61:
● Experimental background noise (wind, BMU, thermal)

● Simulated neutrino signal

Cosmic ray station 52:
● Experimental background noise (wind, BMU, thermal)

● Simulated cosmic ray signal

● Experimental cosmic ray signal (85 events)



Classification Efficiency
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Preliminary

Neutrino station 61:
● Experimental background noise (wind, BMU, thermal)

● Simulated neutrino signal



Classification Efficiency
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Preliminary

Neutrino station 61:
● Experimental background noise (wind, BMU, thermal)

● Simulated neutrino signal

➔ Convolutional neural network trained on these data 

sets incorrectly classifies two noise events as signal 

and three neutrino signal events as noise



Classification Efficiency
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Neutrino station 61:
● Experimental background noise (wind, BMU, thermal)

● Simulated neutrino signal

➔ Convolutional neural network trained on these data 

sets incorrectly classifies two noise events as signal 

and three neutrino signal events as noise

➔ Trained network achieves 99% signal effciency with 2 

remaining noise events (white triangles)

➔ Traditional methods achieve 97% signal efficiency 

with 53 remaining noise events (red dots)

Preliminary



Artifact Study
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Cosmic ray station 52:
● Experimental background noise (subset)

● Simulated cosmic ray signal

● Experimental (tagged) cosmic ray signal 

(85 events)

Preliminary



Artifact Study
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Cosmic ray station 52:
● Experimental background noise (subset)

● Simulated cosmic ray signal

● Experimental (tagged) cosmic ray signal 

(85 events)

➔ Low statistics in experimental tagged cosmic rays 

(red data)

➔ If an artifact is present, red data would match 

black data

➔ Vast majority of experimental cosmic rays (red 

data) are properly identified

Preliminary



Thank you!



Extra slides



100 sample CNN 
5-fold cross validation

Stability in training a DL network



DL compared to more classical analysis methods



Antennas buried in the ice



Two noise waveforms for station 61 classified as 
signal



Training Data Sets

Astrid Anker 21

Cosmic ray station 52:
● Experimental background noise (wind, BMU, 

thermal)

● Simulated cosmic ray signal

● Experimental cosmic ray signal (85 events)

➔ Experimental data has separate populations of 

thermal noise and wind/BMU events

➔ Cut on experimental data above 60 mV to match

the thermal noise distribution

➔ Use this data for training

Preliminary



Example waveforms (BMU, wind, expCR, NU, TN)
windBMU expCR

simNU Thermal 
noise


