Beam-Beam Collaboration and Plans

Spencer Gessner January 19, 2023

Collaboration on Beam-Beam Interactions

SLAC

- Tim Barklow CAIN
- Cho-Kuen Ng WarpX
- Spencer Gessner Osiris

Oslo

Gevy Cao – GUINEA-PIG

LBNL

- Arianna Formenti WarpX
- Remi Lehi WarpX
- Jean-Luc Vay WarpX

CEA

- Luca Fedeli
- Henri Vincenti

Introduce Particle-in-Cell simulations as a tool for beamstrahlung calculations to the HEP Linear Collider Community.

Goals

Near-Term

- Run Warp-X running with existing QED packages and compare to GUINEA-PIG and CAIN.
- Start implementing and testing additional QED packages (Bethe-Heitler, coherent processes, etc).

Mid-Term

- Validate Warp-X beam-beam collision physics against previous ILC work.
- Opportunity to contribute to Linear Collider research by providing new tools for beamstrahlung simulations.

Long-Term

- Extend Warp-X capabilities to multi-TeV, large-Upsilon regime.
- Test new hypotheses and methods for reducing beamstrahlung and preserving luminosity spectrum.

Connections and Cross-Checks

Electron-Positron Collisions

- Gevy Cao GUINEA-PIG
- Cho-Kuen Ng WarpX
- Spencer Gessner Osiris
- Arianna Formenti WarpX

Gamma-Gamma Collisions

- Tim Barklow CAIN
- Arianna Formenti WarpX

Upcoming

Submit results of Snowmass Studies to JINST.

- Include discussions of the plans of this collaboration.
- <u>https://www.overleaf.com/project/63c8f92ae0b7e269</u>
 <u>ceeff649</u>

LCWS workshop will be hosted at SLAC in May.

• Submit abstracts and prepare to engage with LC community.

1 PREPARED FOR SUBMISSION TO JINST

² Beam Delivery and Beamstrahlung Considerations for

- **Ultra-High Energy Linear Colliders**
- Tim Barklow,^a Spencer Gessner,^a Mark Hogan,^a Cho-Kuen Ng,^a Michael Peskin,^a Tor
- s Raubenheimer,^a Glen White,^a Erik Adli,^b Gevy Jiawei Cao,^b Carl A. Lindstrøm,^b Kyrre
- 6 Sjobak,^b Sam Barber,^c Cameron Geddes,^c Arianna Formenti,^c Remi Lehi,^c Carl
- $_7$ Schroeder, ^c Davide Terzani, ^c Jeroen van Tilborg, ^c Jean-Luc Vay, ^c Chris Doss, ^d Michael
- $_{*}$ Litos, d Ihar Lobach, e John Power, e Maximilian Swiatlowski f Luca Fedeli, g Henri
- 9 Vincenti,⁸
- 10 ^aSLAC National Accelerator Laboratory
- ^b University of Oslo
- ¹² ^cLawrence Berkeley National Laboratory
- ¹³ ^dUniversity of Colorado Boulder
- 14 ^eArgonne National Laboratory
- 15 ^fTRIUMF
- 16 ⁸ CEA

17 ABSTRACT: As part of the Snowmass'21 community planning excercise, the Advanced Accelerator

- 18 Concepts (AAC) community proposed future linear colliders with center-of-mass energies up to
- ¹⁹ 15 TeV and luminosities up to 50×10^{34} cm⁻²s⁻¹ in a compact footprint. In addition to being
- 20 compact, these machines must also be energy efficient. We identify two challenges that must be
- addressed in the design of these machines. First, the Beam Delivery System (BDS) must not add
- 22 significant length to the accelerator complex. Second, beam parameters must be chosen to mitigate
- 23 beamstrahlung effects and maximize the luminosity-per-power of the machine. In this paper, we
- 24 review advances in plasma lens technology that will help to reduce the length of the BDS system
- and we detail new particle-in-cell simulation studies that will provide insight into beamstrahlung
- 26 mitigation techniques.