C3 - Muon collider detector common needs

Open discussion points

Goals of this discussion

As exemplified by Max's presentation, some common themes appear in both Muon Collier as well as C³ detector requirements/wish-list

- however, environments differ very significantly;
- Identifying synergies for detector R&D between them allow to maximize usefulness of today's R&D for future colliders different timescales

Goals for today:

Identify new common needs we haven't thought of yet

Identify possible technologies for R&D that could serve both machines in common

Figure out where we need further studies to pin down requirements precisely

Tracker

(Sample of) Motivation:

• Common: momentum & impact parameter resolution, efficiency

Technology and R&D directions

- Silicon tracking a prominent option for both
 - Gaseous detector possible certainly for C³, not very explored for larger radii of μ-col
- Common items: Mechanics, Cooling*, thin Si sensors, FE readout / integrated, ...
 - For C³, options to push to limits likely not affordable for a μ-col, e.g. no active cooling, power pulsing? Note on bunch "trains" collision rate: ILC: 5Hz, C3: 120Hz, μ-col: 100kHz (1 bunch only)
- Max. affordable material budget and radiation hardness requirements might point in different directions for some of the technological choices

(Sample of) Requirements:

- High magnetic field: 3-5 T
- Low-radius innermost layer: 14/30mm
- Best-possible resolution 3-5µm
- µ-col specific: radiation hardness
- C3: lightweight (great for µ-col as well)

Timing (mostly tracker but also beyond)

Motivation:

- C3: mostly particle ID (K/pi separation)
- µ-col: mostly BIB rejection

Technology and R&D directions for sensors

- LGADs sensors
 - Great timing demonstrated, many new ideas to push towards O(10um) resolution
- 3D silicon sensors
 - Great for rad. hardness, need development to push timing resolution
- LYSO crystals + SiPMs
 - Mostly for single-layer timing or embedded in a calorimeter?
- Explore new materials/composites

Requirements:

- C3: ~10ps timing layer
- µ-col: at least ~30ps timing in most layers

Timing (mostly tracker but also beyond)

Motivation:

- C3: mostly particle ID (K/pi separation)
- µ-col: mostly BIB rejection

Technology and R&D directions for FE electronics

- Minimize power consumption and channel size
 - Implications on cooling -> mass
- Reduce channel size to be compatible with position resolution req.
- Increase amount of on-detector "logic"
 - Real-time processing, more functionalities; push towards 28nm technology

ASIC	Technology	Pitch	Total size	Power consumption	TID tolerance
ALTIROC	130 nm	$1.3\mathrm{mm}$	$19.5 imes 19.5 \ \mathrm{mm^2}$	5 mW/chan	2 MGy
ETROC	$65 \ \mathrm{nm}$	$1.3\mathrm{mm}$	$20.8 imes 20.8 ext{ mm}^2$	3 mW/chan	1 MGy
RD53A/HL-LHC pixels	65 nm	$50\mu{ m m}$	$20 imes 11.6 \ \mathrm{mm^2}$	$< 10 \ \mu W/chan$	515 MGy

Requirements:

- C3: ~10ps timing layer
- µ-col: at least ~30ps timing <u>in most layers</u>

Calorimeters

Both need high granularity and fast timing, for different reasons:

CCC

- Good energy resolution, particle ID/flow requires high granularity
- 3-5 ns bunch spacing requires good timing resolution and readout

Muon collider

- High granularity, fast timing resolution are important for BiB suppression
- Need timing per-cell, not just timing layer
- Small Integration time reduces BIB impact

Both collaborations beginning from same CALICE-ish designs \rightarrow common ground

- ECal: Silicon+Tungsten
- HCal: Scintillator+SiPM with lead/steel absorber

[Not studied yet at 10 TeV muon collider, only 3 TeV may have to change]

Dual readout is a compelling option also - but would need small cell size to be a good option at muon collider

Differences: radiation hardness (more stringent in MuCol, especially forward); potential need for hit selection at readout level, ...

Muon detector

Gaseous chambers are the obvious options.

• for a μ-col, away enough from IP that BIB suppression does not play as dominant of a role

Many possible commonalities in both environments:

- Need for eco-friendly gas options
- Fast readout with good timing resolution

Dimensions will likely differ significantly (different momentum range), but might not impact as strongly the technological choices (?)

DAQ/Software

Quite large bandwidth requirements when taking into account the desire for minimal trigger-bias.

- Implication also on handling offline large data volumes
- Data transmission

Hardware accelerators and algorithms that take full advantage of them

Usage of modern heterogeneous resources

Auxiliary detectors and programs

Proposed for both current and future accelerators, external detectors (<u>relatively</u> far from the main detector) with more specific functionalities and physics goals

- Detection of long-lived particle decays (large volumes preferred, position depends on target mass as well)
- Beam-dump facilities and detectors
- Identification of very-forward leptons ???
 - e.g. in VBF-dominated production

Backup materials

Useful links

- Muon collider forum report: <u>https://arxiv.org/pdf/2209.01318.pdf</u>
- Muon detector needs talk (Tova Holmes): <u>https://indico.fnal.gov/event/56615/contributions/253774/attachments/162471/</u> 214755/2022-12-16-DetectorNeeds.pdf
- SiD for CCC slides (Andy White): <u>https://indico.slac.stanford.edu/event/7016/contributions/3246/attachments/14</u> <u>61/3869/SiD_for_CCC_2.pdf</u>
- Fast timing requirements for a Muon Coillider (Larry Lee): <u>https://indico.fnal.gov/event/22303/contributions/246181/attachments/157684/</u> <u>206422/072122_LLee_MuonColliderTiming_Snowmass.pdf</u>

Collider Scenario	Event size	Event rate	Data/year
HL-LHC general purpose expt	4.4 MB	10 kHz	0.6 EB
FCC-ee Z -pole, one expt	1 MB	100 kHz	2 EB
CEPC 240 GeV, one expt	20 MB	2 Hz	260 PB
ILD 500 GeV	178 MB	5 Hz	14 PB
CLIC 3 TeV, 1 expt	88 MB	50 Hz	110 PB
Muon Collider, 1 expt	50 MB	2 kHz	2 EB
FCC-hh, 1 expt	50 MB	10 kHz	10 EB

 Table A-2.
 Computational resources expected at future Energy Frontier colliders.