C^{3} and $\mu \mathrm{C}$: Motivations for Detector Requirements
 C3 Collaboration Meeting

Maximilian Swiatlowski

TRIUMF

Why Have This Discussion?

- C^{3} and $\mu \mathrm{C}$ are quite different machines, and potentially require quite different detectors
- Our communities are united by a common interest in future colliders
- Detectors for these machines may have to be quite different, BUT we may be able to find shared detector interests
- Especially as we propose projects for detector R\&D, knowing where technologies can serve both detectors can be very useful
- This talk: motivate the physics requirements of each detector
- Discussion session: discuss possible common ground, identify areas of overlap

C^{3} Detector Requirements

Physics Goals: Precision

- Many existing resources on ILD/SiD design and motivation: I won't be able to summarize all this great work!
- ILD talk from Graham, SiD from Jan and Andy
- Main motivation: aim for precision for Higgs measurements
- How to achieve precision? Minimize resolution, especially for jets
- Best possible tracking: high magnetic field, minimal material
- Best possible calorimetry: high granularity (to maximize PFlow), or dual readout (to minimize intrinsic resolution)
- Maximize acceptance: full measurement of "hadronic recoil" of Higgs will allow for Higgs-decay independent measurements

Precision Detectors

- ILD and SiD have similar goals, but utilize different technologies
- SiD: maximize B-field, all-silicon tracking
- ILD: minimize material with TPC tracking (+ silicon vertex detector)
- Both extremely hermetic to enable recoil measurements

Requirements for C^{3}

Initial state	Physics goal	Detector	Requirement
$e^{+} e^{-}$	$\overline{\prime \prime Z Z} \text { sub- } \%$ $h b \bar{b} / h c \bar{c}$	Tracker Calorimeter Tracker	$\sigma_{p_{T}} / p_{T}=0.2 \%$ for $p_{T}<100 \mathrm{GeV}$ $\sigma_{p_{T}} / p_{T}^{2}=2 \cdot 10^{-5} / \mathrm{GeV}$ for $p_{T}>100 \mathrm{GeV}$ 4% particle flow jet resolution EM cells $0.5 \times 0.5 \mathrm{~cm}^{2}, \mathrm{HAD}$ cells $1 \times 1 \mathrm{~cm}^{2}$ $\mathrm{EM} \sigma_{E} / E=10 \% / \sqrt{E} \oplus 1 \%$ shower timing resolution 10 ps $\sigma_{r \phi}=5 \oplus 15\left(p \sin \theta^{\frac{3}{2}}\right)^{-1} \mu \mathrm{~m}$ $5 \mu \mathrm{~m}$ single hit resolution

- Snowmass report summarizes the detector requirements for Higgs physics
- Many different detector technologies possible to fulfil these goals
- Improvements still possible beyond these!
- Alternatives also possible, e.g. dual-readout calorimetry

$\mu \mathrm{C}$ Detector Requirements

Physics Goals: Discovery

- As Isabel explained, the primary motivation of the muon collider is discovery physics
- It will be able to measure properties of the Higgs and SM as well-but think of it more like FCC-hh
- A $14 \mathrm{TeV} \mu \mathrm{C}$ has the mass
 reach of a 100 TeV pp machine!

The Challenge of BIB

Decay of one muon near the IP

- μ are of course not stable: will decay in flight
- Electrons from decay strike shielding, and produce showers that (unfortunately) penetrate to the detector
- Beams of μ will be continuously decaying: constant stream of background into the detector
- Mitigating "Beam Induced Background" is the main detector design challenge

Shielding

Detector Performance Report

- Shielding (in cyan) is the first line of defence against BIB
- Tungsten nozzles coated in borated polyethylne
- Reduces background reaching the detector substantially
- Currently optimized for 1.5 TeV collider: probably substantial room for improvement
- Large implications for detector design!
- Limited forward coverage
- Challenges for hadronic recoil, measurements with missing momentum, etc.

BIB In The Detector

- Quite a different challenge from pileup at the LHC or FCC-hh: total BIB is greater in energy than the collision, but very soft/diffuse
- Here, even with 0.03% of BIB, the event looks dramatically different from the clean collision!
- Informs detector design and R\&D considerations

$$
\mu \mu \rightarrow H \nu \nu \rightarrow b b \nu \nu+0.03 \% \mathrm{BIB}
$$

Radiation

- BIB also causes a significant radiation challenge, especially for vertex detector
- Expected radiation at the $10^{15} \mathrm{n}_{\mathrm{eq}} / \mathrm{yr}$: roughly similar to HL-LHC (but very different from C^{3} requirements!)

BIB Characteristics

Detector Performance Report

- Huge number of BIB particles: originate from interactions of electrons with shielding, etc.
- E.g. in vertex detector, HITS are dominated by BIB
- Energy distribution is peaked very low
- Timing is also very dispersed: widely varying arrival times (usually late) for BIB particles

Timing with BIB

Detector Performance Report

- Timing cuts (even fairly loose!) can substantially reduce impact of BIB
- But large contributions will remain
- Tighter timing windows and other methods still required to reduce contamination

Tracking with BIB

Detector Performance Report

- 30-60 ps timing can reduce hit occupancy even further
- "Double layer" tracking (and beamspot requirement) can reduce occupancy even further
- These are examples of detector development required to operate in the $\mu \mathrm{C}$ BIB environment

Calorimetry with BIB

- BIB presents enormous soft, diffuse background to collisions at the $\mu \mathrm{C}$
- Integrated energy from BIB substantially greater than scattering!
- Timing can substantially reduce backgrounds
- Exploiting granularity also seems to be key: suppress BIB with energy cuts per cell. Requires high-granularity calorimetry (e.g. CALICE)
- Both cuts substantially deteriorate resolution, but necessary to remove BIB
- Future analysis and detector developments key to improving jet resolution

Requirements for $\mu \mathrm{C}$

Initial state	Physics goal	Detector	Requirement
μ	Higgs \& LLP	Tracker	30 ps timing resolution and 0.01 rad angular resolution $5 \mu \mathrm{~m}$ single hit resolution

- $\mu \mathrm{C}$ requirements less well defined in Snowmass report, but I hope the previous few slides have given you an impression of what is needed
- Picosecond timing for tracking, high radiation tolerance, potential double layer for background suppression
- High granularity for calorimetry for BIB suppression
- Much less focus on precision (material, etc.): instead, focus on background suppression to enable discovery

An Example of Complementarity

HGCal Calorimetry

ILD Calorimetry optimized for PFlow resolution

CMS Calorimetry optimized for pileup (and PFlow resolution)

- CALICE-style high granularity calorimetry was designed for ILD/SiD to obtain best jet resolution for Higgs measurements
- Turns out to be extremely useful for pileup suppression at the HL-LHC: completely different environment and challenges, but same technology becomes applicable!
- Can we identify overlap like this for two different sets of requirements? Maximize our \$\$ investments?

Conclusions

Conclusions

- The $\mu \mathrm{C}$ and C^{3} environments have very different challenges
- Both require ongoing detector R\&D and optimization
- In many cases the detector needs require extreme focus, but in others the needs may be able to be addressed by common technologies
- As we build the case for detector R\&D funding and new technologies, options that address the needs of both programs may be more attractive
- But this is open for discussion, and should be physics and \$ driven!

