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Higgs central to the Standard Model of particle physics

… half of it is 
about Higgs!

In confirming its successful description of electroweak interactions, 
the SM has given us the first evidence of new physics: the Higgs boson
Future explorations at the EF will have to make the most out of it!
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SM: unique pattern of Higgs couplings and particle masses



The true origin of such pattern escapes the SM

The origin of SSB and ultimately of the EW scale is unexplained by the SM
ØWhy the Higgs potential? Why µ2<0? 

Ø Dynamical origin?  What induces it? 
Ø Cubic and quartic couplings, same l?

ØWhy MH=125 GeV? → Hierarchy problem – Naturalness
Ø Mass of scalar not protected by symmetry, 

receives large quantum corrections

Yukawa interactions depends on arbitrary parameters, unexplained by the SM 
ØWhy the hierarchy of Yukawa couplings ↔ fermion masses?

ØWhy flavor diagonal scalar couplings? Why only one scalar?

ØOther sources of flavor mixing and CP violation?
ØA new force all together?
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The SM is a very predictive theory
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De Blas et al. [arXiv: 2204.04204]
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highly sensitive to new physics

Strongly constrained and very sensitive 
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Didn’t we know all this already?

Previous P5 gave us a “Higgs driver”

Lots has happened in ten years



Ten years of LHC physics and looking ahead

We are only here

Many years of HL running ahead of us

➔ 2-fold increase in statistics by the end of Run 3
➔ 20-fold increase in statistics by the end of HL-LHC!

Ø Run 1: Higgs discovery
Ø Run 2: Higgs couplings

Ø outperformed expectations
Ø Run 3 to HL-LHC

Ø Higgs precision program

Higgs physics has been at the core 
of the LHC physics program

Snowmass 2013/Previous P5

Snowmass 2021/Current P5



From discovery to precision physics
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Total Stat. onlyATLAS
        Total      (Stat. only)

 Run 1ATLAS + CMS  0.21) GeV± 0.24 ( ±125.09 

 CombinedRun 1+2  0.16) GeV± 0.24 ( ±124.97 

 CombinedRun 2  0.18) GeV± 0.27 ( ±124.86 

 CombinedRun 1  0.37) GeV± 0.41 ( ±125.38 

γγ→H Run 1+2  0.19) GeV± 0.35 ( ±125.32 

l4→H Run 1+2  0.30) GeV± 0.30 ( ±124.71 

γγ→H Run 2  0.21) GeV± 0.40 ( ±124.93 

l4→H Run 2  0.36) GeV± 0.37 ( ±124.79 

γγ→H Run 1  0.43) GeV± 0.51 ( ±126.02 

l4→H Run 1  0.52) GeV± 0.52 ( ±124.51 

-1 = 13 TeV, 36.1 fbs: Run 2, -1 = 7-8 TeV, 25 fbs: Run 1
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 CMS
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Total Stat. Only

Run 1+2

MH promoted to EW 
precision observable
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Zooming in on couplings to probe the TeV scaleRun 2

Ø Couplings to W/Z at 5-10 %
Ø Couplings to 3rd generation to 10-20%
Ø First measurements of 2nd generation 

couplings

Ø HL-LHC projections from partial Run 2 data (YR):
Ø 2-5 % on most couplings 
Ø < 50% on Higgs self-coupling.

Ø Full Run2 results drastically improve partial Run 
2 results: better projections expected

reach for LBSM

CMS, arXiv:2207.00043
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Run 2 and 
beyond Beyond SM-coupling rescaling

GGI - Tea Breaks - 9 June - On Line                                                             Fabio Maltoni 

One can satisfy all the previous requirements, by building an EFT 
on top of the SM that respects the gauge symmetries:

Searching for new interactions with an EFT 
A simple approach

L
(6)
SM = L

(4)
SM +

X

i

ci
⇤2

Oi + . . .

With the “only” assumption that all new states are heavier than 
energy probed by the experiment .


The theory is renormalizable order by order in , perturbative 
computations can be consistently performed at any order, and 
the theory is predictive, i.e., well defined patterns of deviations 
are allowed, that can be further limited by adding assumptions 
from the UV.  Operators can lead to larger effects at high energy 
(for different reasons).  


s < Λ

1/Λ

* Sufficiently weakly interacting states may also exist without spoiling the EFT.

.
Λ2 > s |ci | /δ

s |ci | /Λ2 < δ

 

 

SM

EFT in the tails

Rescaling

pT(t,H)

Illustrative plot

 

Energy helps precision

33
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... generic BSM scenarios ...

Extension of the SM Lagrangian by d > 4 e↵ective field theory (EFT) operators:
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p
s.

Expansion in (v, E)/⇤: a↵ects all SM

observables at both low and high-energy.

• SM masses, couplings ! rescaling

• shape of distributions ! more visible

in high-energy tails

Systematic, yet complex approach.

+

Studying correlations among operators

can point to specific BSM patterns.

[Figures from F. Maltoni]
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Model new physics by extending the SM Lagrangian by effective interactions (ex. SM EFT)

Under the assumption that new 
physics leaves at scales Λ > 𝑠

Expansion in ⁄(𝒗, 𝑬) 𝜦:  affects all SM observables at 
both low and high energy

Ø SM masses and couplings → rescaling
Ø Shapes of distributions → more visible in tails of distributions



Theory has come a long way
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• Observe excellent perturbative convergence & uncertainty coverage
• Crucial to consider every variation to probe all parts of the prediction

• DivideH ! �� branching ratio B�� out of data [LHC Higgs Cross Section WG, ����.�����]
• Data are corrected for other production channels, photon isolation e�ciency
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Several backgrounds also know at 
NLO QCD+EW or improved NLO (+NNLL)
(e.g. W/Z+j, ttbb, ttW, ttZ, ttg, …)

LHC Higgs WG

Anastasiou et al. [1502.06056]

Kulesza et al. [1812.08622]
Bliss et al. [2102.08039]



What to look for after HL-LHC



Beyond the HL-LHC: Precision and Energy

New physics at tree level:
δηSM~ g2

BSM E2/M2

New physics at loop level:
δηSM~ 1/16π2 × g2

BSM E2/M2

Higgs coupling measurements and direct searches 
will complement each other in exploring  the 

1-10 TeV scale and beyond.

New physics can be at low as at high  mass scales, 
Naturalness would prefer scales close to the EW scale, but 
the LHC has already placed strong bounds around 1-2 TeV.

In a simplified picture:



Beyond the HL-LHC: proposed future colliders   

Multi-TeV
colliders

Higgs Factories



Higgs-boson factories 
(up to 1 TeV c.o.m. energy)

Multi-TeV colliders 
(> 1 TeV c.o.m. energy)

17

Timelines are taken from the Collider ITF 
report (arXiv: 2208.06030)Snowmass EF wiki: https://snowmass21.org/energy/start

Snowmass 21: 
EF Benchmark Scenarios

https://arxiv.org/abs/2208.06030
https://snowmass21.org/energy/start


Beyond the HL-LHC: projections for Higgs couplings

From C. Vernieri – Snowmass 21 EF Workshop - Brown U. - March 2022
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● Studying ZH with Z going to leptons and neutrinos
● κs< 7.14 at 95% c.l..

arXiv:2203.07535

● Electron Yukawa at FCC-ee (s-channel H)
● κe< 1.6 at 95% c.l.

arXiv:2107.02686

Reach for light fermion Yukawa couplings: highlights

https://arxiv.org/abs/2203.07535
https://arxiv.org/abs/2107.02686
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Improvement wrt. HL-LHC

H,

● Many stages/upgrades:
○ 125 GeV on-Higgs resonace
○ 3 TeV
○ 10 TeV
○ >10 TeV (14, 30, … TeV)

● Lepton collider
○ Cleaner environment → precision

● … but high energy
○ Pushing  the EF → discovery

● Competitive/complementary to ~100 TeV hadron collider
● Contained size

○ Mμ~ 200 me → reduced synchrotron radiation (x 1.6 x10-9)
● New physics regimes

○ E > ΛEW
○ EW radiation

The case of a Muon Collider

Snowmass 21 EF Higgs TG Report 
(arXiv:2209.07510) &
MuC Forum Report
(arXiv:2209.01318)

See I.Ojalvo’s talk



Initial stages of future 
e+e- machines

Final reach of all 
considered 
future colliders

Reach of future colliders for Higgs couplings: a closer look
From

 Snow
m

ass 2021 EF
Higgs Topical G

roup Report
arXiv:2209.07510

Based on full Run 2 dataset analyses



Focusing on final reach of e+e- machines 

ILC/C3  reach beyond 500 GeV and upgrade to 1 TeV allows drastic improvements in measuring couplings 
to W and top as well as more precision in a model independent measurement of the total width.

What about Higgs self-coupling?



● ATLAS and CMS HL-LHC updated

● FCC-hh updated  arXiv:2004.03505

● Added MuC reach:

arXiv:2203.07256

Reach for Higgs self-coupling

https://arxiv.org/abs/2004.03505
https://arxiv.org/abs/2203.07256


Constraining BSM via global EFT fits

GGI - Tea Breaks - 9 June - On Line                                                             Fabio Maltoni 

Global fits: EWPO+H+EW+Top
Global fits

• Already now and without a dedicated experimental effort there 
is considerable information that can be used to set limits:


•Fitmaker [Ellis et al. 2012.02779]

•SMEFiT  [Either et al. 2105.00006]

•SFitter [Biekötter, Corbett, Plehn, 2018] +  [Brivio et al., 1910.03606]  (separated)

•HEPfit [de Blas, et al. 2019]

•  30+ operators, linear and/or quadratic fits, Higgs/Top/EW at 
LHC, WW at LEP and EWPO.

44

EFT connects different processes with large correlations: pattern of 
coefficients give insights on underlying BSM model

EW + Higgs 
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arXiv:2206.08326

https://arxiv.org/abs/2206.08326


Stress testing the SM  and 
exploring anomalous couplings 
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Disentangling models from EFT patterns
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ILC precisions from full EFT fit

model predictions

additional scalar singlet
(mS=2.8 TeV, max mixing)

2HDM-II
(MH=600 GeV, tanb=7)

Composite Higgs
(f=1.2 TeV)

The “inverse Higgs” problem

Snowmass 2021: ILC white paper (arXiv: 2203.07622)

Examples to illustrate the different patterns of Higgs coupling deviations from different BSM models



Extended Higgs sectors: 
2HDM, extra singlets, …

Higgs and flavor:
probing anomalous 
Hss coupling

arXiv:2203.07261
arXiv:2203:08206

arXiv:2203:07535

Extended Higgs sectors - direct BSM portal

https://arxiv.org/abs/2203.07261
https://arxiv.org/abs/2203.08206
https://arxiv.org/abs/2203.07535


Setting priorities



EF has prioritized the case of a Higgs Factory
From the Snowmass 2021 Executive Summary of EF report:

The EF supports continued strong US participation in the success of the LHC, and the HL-LHC 
construction, operations, computing and software, and most importantly in the physics 
research programs, including auxiliary experiments. 

The EF supports a fast start for construction of an e+e− Higgs factory (linear or circular), and a 
significant R&D program for multi-TeV colliders (hadron and muon). The realization of a 
Higgs factory will require an immediate, vigorous, and targeted detector R&D program, 
while the study towards multi-TeV colliders will need significant and long-term investments in 
a broad spectrum of R&D programs for accelerators and detectors. 

The US EF community has also expressed renewed interest and ambition to bring back 
energy-frontier collider physics to the US soil while maintaining its international collaborative 
partnerships and obligations. 

[EF report: arXiv: 2211.11084]

https://arxiv.org/abs/2211.11084


Summary

● The Higgs discovery has been fundamental in opening new avenues to explore physics 
beyond the SM and the Higgs-physics program ahead of us promises to start answering 
some of the remaining fundamental questions in particle physics.

● Collider physics remains as a unique and necessary test of any BSM hypothesis.

● Many new directions have been explored during the Snowmass 2021 exercise, building 
on previous studies (ESG), and have indicated the need to explore the TeV scale beyond 
LHC reach by pushing both precision (Higgs factories) and energy (multi-TeV colliders).

● Increasing the accuracy on SM observables (Higgs, top, EW) could allow to test higher 
scales: a factor of 10 in precision could allow to test scale in the 10 TeV range and betyond.

● The possibility of reaching c.o.m. energies above 500 GeV in e+e- collisions is crucial to
improve the full spectrum of HL-LHC measurements, including top-Higgs and Higgs self-
coupling, as well as probing extended Higgs sectors and new physics that can eluded the 
LHC.



Additional material
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Original timeline from ESG 
Updated during Snowmass 2021 

(see EF Report)

Renewed interest in lepton colliders:
need supporting R&D in near future



Higgs precision reach of Future Colliders: a summary


