

Cool Copper Collider Workshop Buffalo Thunder, NM

High Gradient C-band Activities Report

Alex Murokh, RadiaBeam Technologies, LLC.

06 February 2023

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government

Outline

- DARPA GRIT program
- GRIT C-band sub-systems and infrastructure development
- Other relevant activities at RadiaBeam

GRIT BAA requirements

- RadiaBeam has been working for years with UCLA and Amplitude on the Inverse Compton Scattering (ICS) X-ray source development, so we responded to the BAA
- In 2019 DARPA issued a call for a compact tunable gamma ray source (GRIT BAA)

- ICS is the only path known to us to achieve the desired purity and tunability range
- To achieve flux requirements, we can not afford laser frequency conversion losses, and at 1 μm laser wavelength 3 MeV converts into the 400 MeV e-beam energy
- Combined with the 12 m footprint, we need > 50 MeV/m acceleration

GRIT BAA

- High gradient brings us to either C-band or X-band NCRF linac solution
- High flux requirement favors C-band: long pulse trains and high r.r. can be supported by Cannon klystrons, and larger linac aperture can support longer pulse trains without a breakup.

Objectives	Parameter	TA 1 Phase 2
Intensity	Intensity (ph/s)	10^12
	Repetition Rate (kHz)	1
Tunability	Tunability Tunable Energy Range (MeV)	
Purity	Purity Bandwidth (dE/E)	
	Size (m) (40' Conex internal dim)	< 2.4 x 2.3 x 12.0
Compactness	Weight (kg)	< 16,000
	Power (kW)	< 300

• Still with the best RF power sources and laser drivers available we could not identify a path to achieve the desired flux and purity without going to cold RF (C³), which was proposed

 The contract was awarded in March 2020 for the Phase I scaled study, and eventually the flux and purity requirements were decoupled, enabling a room temperature solution.

GRIT collaboration

- The collaboration predated GRIT program with the focus on the high flux hard X-ray compact ICS sources for medical and inspection applications.
- The system combines 3 innovative components:
 - Fabry-Perot optical cavity and solid-state laser system (collaboration with Amplitude)
 - High gradient C-band linac (collaboration with SLAC)
 - Hybrid C-band photoinjector (collaboration with UCLA)

UCLA

Fabry Perot Cavity (FPC)

- Burst mode pulse stacking cavity enables high finesse laser power amplification at the ICS interaction point in the burst mode (up to 1 kHz, 5 μs bursts)
- A prototype FPC is currently being developed at Amplitude, and will soon become available at RadiaBeam for pulse train ICS experimentation
- This technology is scalable to 10⁵- 10⁶ interactions/s

L. Amoudry et al. "Optimization of a Fabry-Perot cavity operated in burst mode for Compton scattering experiments," PR AB **21**(12), 121601(2018).

C-band high gradient linac

- A split structure distributed coupling C-band linac .
- The split structure geometry enables manufacturing the structure in two halves, which is less expensive process than a conventional cell by cell manufacturing.
- In addition, such open structure geometry enables unlimited freedom in optimizing the shape of the cells, thus optimizing the performance
- First 2–meter module is in fabrication

M. Nasr et al. New Geometrical-Optimization Approach using Splines for Enhanced Accelerator Cavities' Performance, IPAC'18

Hybrid photoinjector

- Hybrid incorporate two C-band RF cavities in a single device:
 - Standing Wave (SW) RF cavity provides high gradient acceleration (120 MV/m at cathode)
 - Traveling Wave (TW) RF cavity provides longitudinal compression up to 500 A
- Hybrid allows to reduce ICS footprint, increase interaction efficiency, and improve beam dynamics in the linac

Phase I System Overview

- The goal was to demonstrate ICS system integration and key components of the Phase II system in a scaled experimental configuration
- Single pulse system includes hybrid gun and 100 MeV linac, but the FPC is demonstrated separately

Repetition rate	100 Hz
Laser wavelength	1030 nm
Laser pulsed energy	23 mJ
Laser pulse length, FWHM	1.8 ps
E-beam charge	250 pC
Normalized emittance	0.5 μm
Spot size at IP, RMS	9 µm
Peak current	500 A
RF pulse length	< 1 µs
E-beam peak energy	105 MeV
Linac length	2 m
Accelerating gradient	50 MeV/m
RF power per linac	25 MW
Signal losses budget	60 %
Photon flux	10 ⁹ ph/s
On-axis BW	0.65 %

Outline

- DARPA GRIT program
- GRIT C-band sub-systems and infrastructure development
- Other relevant activities at RadiaBeam

Phase I Timeline

- We received DARPA contract on March 19, 2020, 1 week after COVID shut down
- In some way the timing was fortunate to quickly settle on the Phase I system design
- By June 2020 we were able to place critical purchase orders for C-band RF power stations, Magma 25 laser system from Amplitude, and most of the RF network and LLRF subcomponents
 - received many good advises from LANL C-band test stand group which were 6 months ahead of us on the infrastructure build up
- As a result, by the time serious COVID era supply shortages became an issue (Fall 2021), we had most of the critical subsystems in hand for the Phase I
- First beam from the photoinjector was obtained in April 2022
- Of course, some of the aftershocks significantly affected the schedule and the budget of the project, so we had to stop work and apply for additional funding
- The project restarted in October 2022, and we are back to the hybrid commissioning mode

Other sub-systems development

- C-band RF power stations and C-band infrastructure
- IR laser and photoinjector drive laser systems
- Radiation shielded bunker

Initial commissioning results

Parameter	Units	Design	Measured	Comments	500 - 400 - 300 -
Beam Energy	MeV	4.4	4.6 ± 0.2	There is a jitter obscuring more accurate measurements (before LLRF upgrade), also we are not convinced that TW section is at the zero-crossing	[∞] SI 200
Energy spread, RMS	%	< 1%	ROM ~ 2%	Consistent with the non-optimal injection phase	400 -
Beam charge	рС	50-250	> 265	Over 400 pC measured by turbo-ICT, and 265 pC at Faraday cup, FC is more reliable	
Bunch length, FWHM	ps	< 1	N/A	BLIS has not been commissioned yet	200 -
Emittance (normalized)	μm	< 0.8	N/A	Slits were tested but not properly commissioned	800 -

Slit Position YAG

Spectrometer Line YAG

K300 Power Stations

Linac

- L1 bonding completed in December
- Initial cold test is promising
- We plan to assemble 100 MeV beamline in May-June 2023

Outline

- DARPA GRIT program
- GRIT C-band sub-systems and infrastructure development
- Other relevant activities at RadiaBeam

Available RF Power lest Sources					
7		C-Band RF Power Station #1	C-Band RF Power Station #2	S-Band RF Power Station #1	
2	Klystron	Canon: E37202	Canon: E37202	CPI: VKS-8262	
R	RF Peak Power	25 MW	50 MW	5 MW	
S	RF Average Power	2.5 kW	5 kW	16 kW	
	Pulse Length (max)	1 µs	1 µs	16 µs	
$\mathbf{\mathbf{Y}}$	PRF	100 Hz	100 Hz	200 Hz	

5712 ± 5 MHz

Av

Frequency

		S-Band RF Power Station #1	X-Band RF Power Station #2
	Magnetron	E2v: MG7095	E37202
	RF Peak Power	3.1 MW	2 MW
	RF Average Power	3.1 kW	1.6 kW
	Pulse Length (max)	5 µs	4 μs
	PRF	200 Hz	200 Hz
	Frequency	2998 ± 4 MHz	9295 ± 20 MHz

5712 ± 5 MHz

2856 ± 2 MHz

S-Band RF Power Station #2

Canon: 3772A

7.5 MW

3 kW

4 μs

100 Hz

2856 ± 2 MHz

Magnetron

Testing C-band Structure

- In support of the SLAC C³ R&D program we conducted a number of hot tests, using the GRIT C-band infrastructure
- Utilized 25 MW C-band power station () to test SLAC prototype linac structure (de)tuned to be at 5716.8 MHz @ ≈50°C
- Conditioned the structure while monitoring breakdown rate and vacuum
- Conditioned up to 15 MW, 100 Hz, 1 μs pulse width
- Saw expected breakdown rate decline over conditioning period

Detrober 2021

STRUCTURE BREAKDOWN TREND

300

Testing: Cold C3 Structure

July 2022

- Repeated the test of the same structure, at LN2 temperature
- Baked the structure prior to testing
- Frequency scaling:
 - @26 °C = 5694.1 MHz
 - @-195 °C = 5712.4 MHz
- Conditioned up to 10 MW, 100 Hz, 1 µs pulse width
 Suspected ion pump failure halted progress
- There were no significant RF breakdown events
 - There was some breakdown in waveguide close to structure
- LN2 burn rate was 230 liters per day
 Did not try to optimize setup

C-Band Single Cell Testing (ACCEL)

- ACCEL is another DARPA supported program, to develop a very compact, battery powered, high power linac
- SLAC leads the effort, RadiaBeam is a junior partner
- Utilized 50 MW C-band power station in December of 2022 to high power test two clamped single cell cavities designed to operate at ~ 500 kW Peak Power
- Cavities were placed inside cavity chamber, 8" vacuum tee
 - Cavity #1: Conditioned up to 2 MW, 10 Hz, 1 μ s pulse width
 - –Cavity #2: Conditioned up to .2 MW, 10 Hz, 1 μ s pulse width
- Breakdown rate decreased as conditioned progressed

Faraday Cup (2nd not seen)

C-Band Spiral Load Test

- High power tested SLAC Spiral Vacuum load (3D printed)
- Conditioned from up to 8.1 MW peak power, 1 µs pulse width, 20 Hz rep rate
 - About 9 hours of conditioning
 - Convection cooled load
 - Monitored temperature and vacuum

Future Test Plans

- Commissioning 50 MW C-Band Power Station
- Route to the general testing bunker and GRIT bunker
- Plans to test additional C-band components and test structures at lower power
- High power testing of C³ structure in cryostat
- Potential for C³ beam testing
- Plan to Install power splitter on 50 MW power station to enable low power tests concurrently with the accelerator operation

Conclusions

- DARPA is awesome!
- RadiaBeam and collaborators are developing high brightness 100 MeV C-band accelerator for GRIT ICS program, which should become operational in 2023
- The C-band infrastructure (and trained personnel) developed for the GRIT program can be utilized for other projects, including C³ R&D
- The newly developed C-band capability has already been employed to provide support to SLAC C³ R&D program, and we hope that this collaboration will expand further
- We also welcome a more general community interest in future uses of the GRIT accelerator system
- <u>Acknowledgement</u>: this program has been a fast paced, dynamic team effort externally and internally, and there is here is a long list of contributors to this talk at RadiaBeam, SLAC, UCLA, Amplitude and other institutions