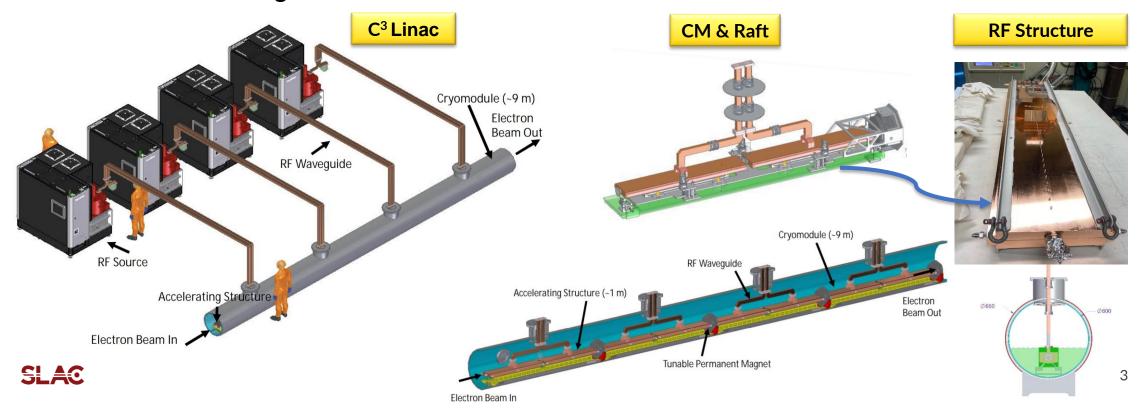
C³ LINAC Demonstration Proposal

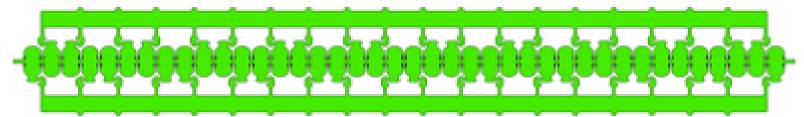
Cool Copper Collider Workshop

Faya Wang

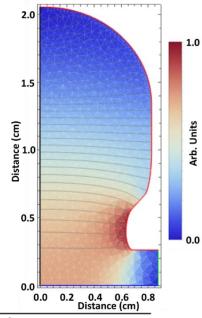
7 Feb. 2023



Acknowledgement


- SLAC: Mei Bai , Valery Borzenets , Martin Breidenbach, Anatoly Krasnykh,
 Carsten Hast, Xianghong Li, Zenghai Li, Emilio Nanni, Tim O'Heron, Dennis
 Palmer, Thomas Peterson, Alex Ratti, Tor Raubenheimer, Muhammad
 Shumail, Caterina Vernieri, Glen White, Juhao Wu
- Florida State University: Guo Wei, Kourosh Shoele

- C³ accelerator technology: Modularized linac based on liquid N2 cooled C-band cavity.
- Cryomodules (CM)s are vacuum insulated cryostats housing 4 rafts, and ha 75 cm ID and about 9 m long.
- Rafts are mechanical supporting structures consisting of 2 accelerator structures and one quadrupole magnet. They are pre-aligned at warm to 5 microns. Each raft has mechanical actuators to align one raft to the next with 5 degrees of freedom.



RF Parameters - C³250/550 GeV

- At C³ the same LINAC can deliver 250 GeV c.o.m and 550 GeV c.o.m in 8 km
- The optimized structure can reach 300 M Ω /m at 80K.
- The accelerator beam aperture (diameter) is 5.2 mm.

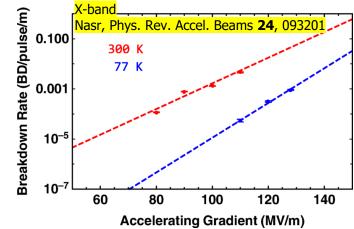
Each CM can reach up to 0.7 GeV with 4 X 50MW klystrons.

Gradient	Power diss.	rf flat top	Pulse	Comments	Power/area	ΔT Cu-bulk
(MV/m)	(W)	(ns)	compr.		$(\mathrm{W/cm^2})$	to LN_2 (K)
70	2500	700	N	${ m C^3}$ -250	0.393	2.3
120	2500	250	N	${ m C}^3$ -550	0.393	2.3
155	3900	250	N	C^{3} -550 in 7 km	0.614	2.5
120	1650	250	Y	${ m C}^3$ -550	0.259	2.1

RF Parameters - C³250/550 GeV

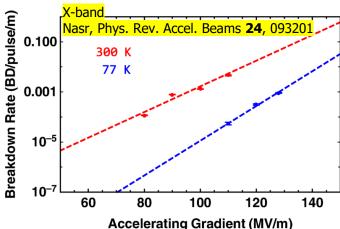
Main linac cryogenic heat load:

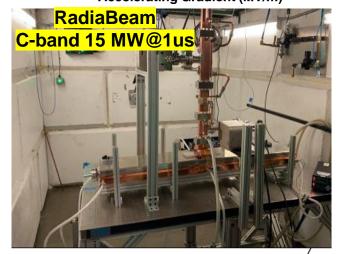
$$\circ$$
 ~9 MW (C³250, C³550-8km) $\frac{250 \text{ GeV}}{70 \text{ MeV/m}} \times 2500 \text{ W/m}$


The LN will cool the accelerator structures by nucleate boiling with the vapor velocity near Cryoplant ~ 3m/s at a power density of 0.4 W/cm².

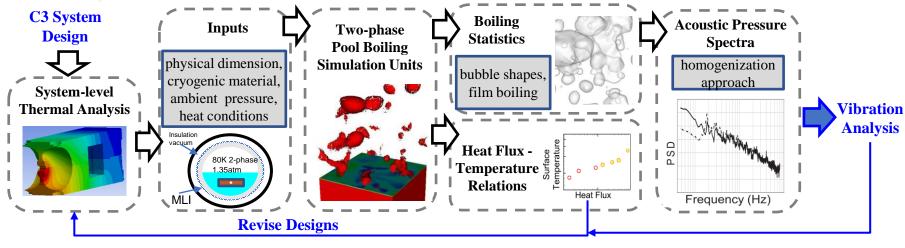
$$\circ$$
 ~14 MW (C³550-7km) $\frac{550 \, GeV}{155 \, MeV/m} \times 3900 \, \frac{W}{m}$

Gradient	Power diss.	rf flat top	Pulse	Comments	Power/area	ΔT Cu-bulk
(MV/m)	(W)	(ns)	compr.		$(\mathrm{W/cm^2})$	to LN_2 (K)
70	2500	700	N	${ m C}^3$ -250	0.393	2.3
120	2500	250	N	${ m C}^3$ -550	0.393	2.3
155	3900	250	N	C^{3} -550 in 7 km	0.614	2.5
120	1650	250	Y	${ m C}^3$ -550	0.259	2.1

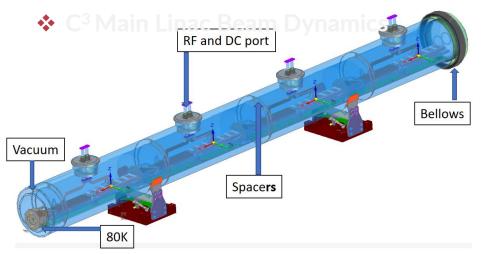

- An X-band cryogenic structure has been demonstrated at high gradient.
- The C-band has been tested at low power at SLAC and high power without beam at Radiabeam



- An X-band cryogenic structure has been demonstrated at high gradient.
- The C-band has been tested at low power at SLAC and high power without beam at Radiabeam
- C³ Linac Remaining Major Risks
 - Achievable gradient and stability over C³ full electron bunch train.
 - Beam emittance growth due to accelerator wakefields
 - Systematic study of alignment and vibration tolerance
 - Performance of the accelerators and the cryostat at the full cryogenic liquid and gas flow rate as expected in C³.
 - A reliable cost basis for extrapolation to C³ scale production.



- Collider Cryogenics Design Study
- CryoModule
- Accelerator Structure
- Beam Dynamics Experimental Study
- **❖** C³ Main Linac Beam Dynamics Simulation Study


- Collider Cryogenics Design Study
- CryoModule
- Accelerator Structure
- Beam Dynamics
- C³ Main Linac Beam Dynamics

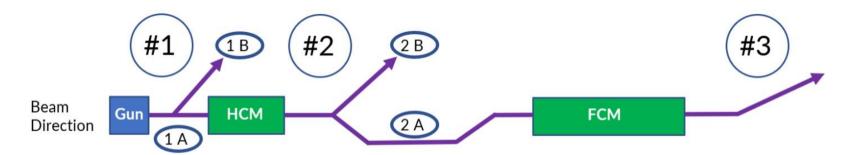
- Vibrations due to boiling of LN
- Large scale simulation setups (from 100s to 100 meters)
- Optimizing CM and cold mass design to avoid the liquid surface turbulent flow
- Engineering procedures to eliminate possible problems
 from linac warm-up and cold-down process
- Instrumentation needs

- Collider Cryogenics Design Study
- CryoModule
- ♦ Accelerator Structure
- Beam Dynamics



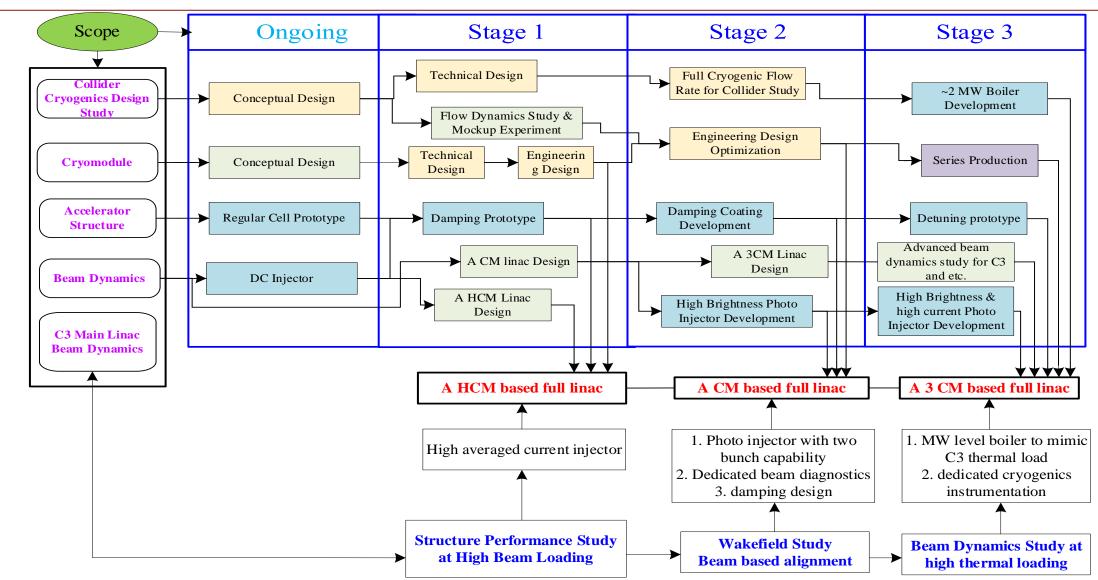
- Adequate stability of the quadrupoles and accelerators during powered operation and full C³ cryogenics fluid flow rate (with margins)
- Adequate range, precision and bandwidth of the raft positioning systems
- Full **C**³ cryogenic flow rate benchmarking with simulation
- In-situ CM vibration measurement
- > In-situ pre-beam alignment ≤ 500 um
- Tunable permanent quadrupole magnets
- Waveguide transitions into the Cryomodule

- Collider Cryogenics Design Study
- CryoModule
- Accelerator Structure
- Beam Dynamics
- **❖** C³ Main Linac Beam Dynamics
- SENSSEN SSENSSENSE BERKER REKRENER BIRKER BIRKER


- Achievable gradient and gradient stability at the C³ equivalent beam loading
- HOM damping design and fabrication
- Integrated beam position monitor for structure alignment
- Optimization of the mechanical design for structure fabrication and tuning
- HOM detuning design

- Collider Cryogenics Design Study
- CryoModule
- Accelerator Structure
- **Beam Dynamics**
- **❖** C³ Main Linac Beam Dynamics

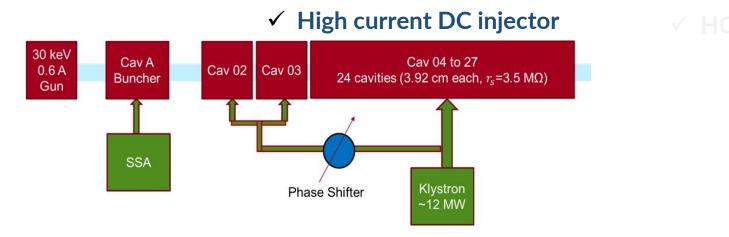
- Measure beam properties and validate wakefield model with simulations.
- Begin development of feedback loops for minimization of emittance growth.
- Develop systematic beam-based diagnostics for different stages of the Demonstrator.



- Collider Cryogenics Design Study
- CryoModule
- Accelerator Structure
- Beam Dynamics
- **❖** C³ Main Linac Beam Dynamics

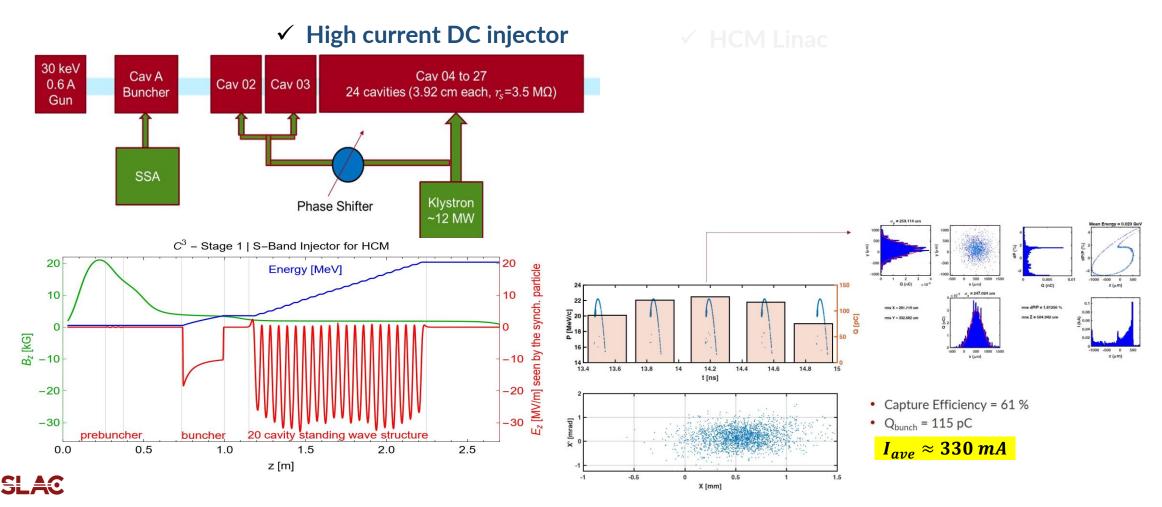
- Perform emittance preservation simulation studies to determine alignment and vibration tolerances
- Investigation and optimization of lattice design, BNS damping, dispersion free steering, and wakefield corrections ect.

- Stage 1: Demonstration of C³ Structure Performance at Full Beam Loading.
 - Demonstrate the accelerator structure at the full C³ equivalent beam loading:
 - Unloaded and loaded at 70 MeV/m and 700 ns with 190 mA C³250
 - Unloaded and loaded gradient of 120 MeV/m and 250 ns with 300 mA C³550

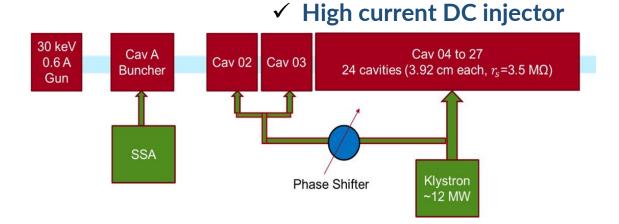


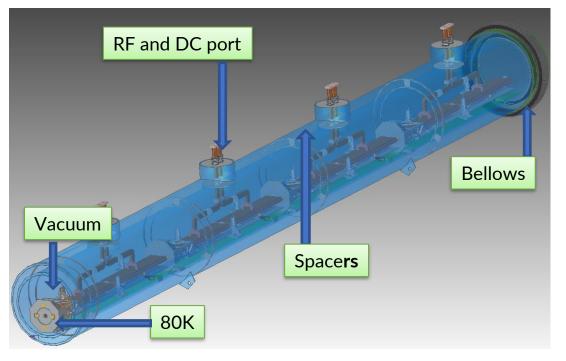
- Stage 1: Demonstration of C³ Structure Performance at Full Beam Loading.
 - Test a C³ half Cryomodule (HCM) at full C³ equivalent beam loading.
 - ✓ High current DC injector

✓ HCM Linac

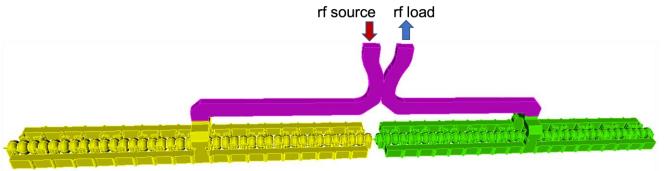


- Stage 1: Demonstration of C³ Structure Performance at Full Beam Loading.
 - Test a C³ half Cryomodule (HCM) at full C³ equivalent beam loading.

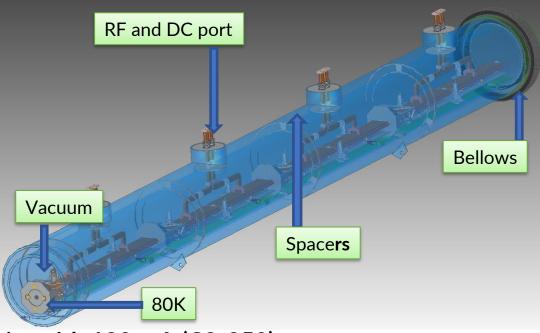



- Stage 1: Demonstration of C³ Structure Performance at Full Beam Loading.
 - Test a C³ half Cryomodule (HCM) at full C³ equivalent beam loading.

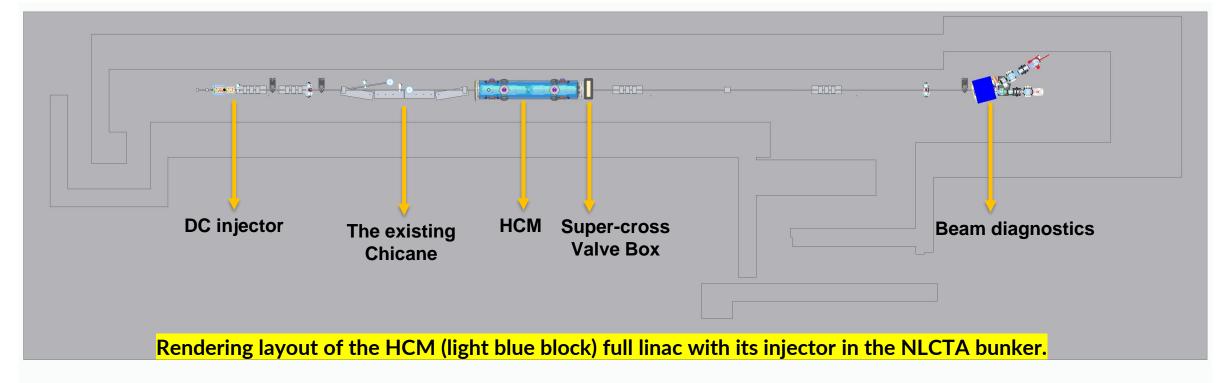
- Stage 1: Demonstration of C³ Structure Performance at Full Beam Loading.
 - Test a C³ half Cryomodule (HCM) at full C³ equivalent beam loading.



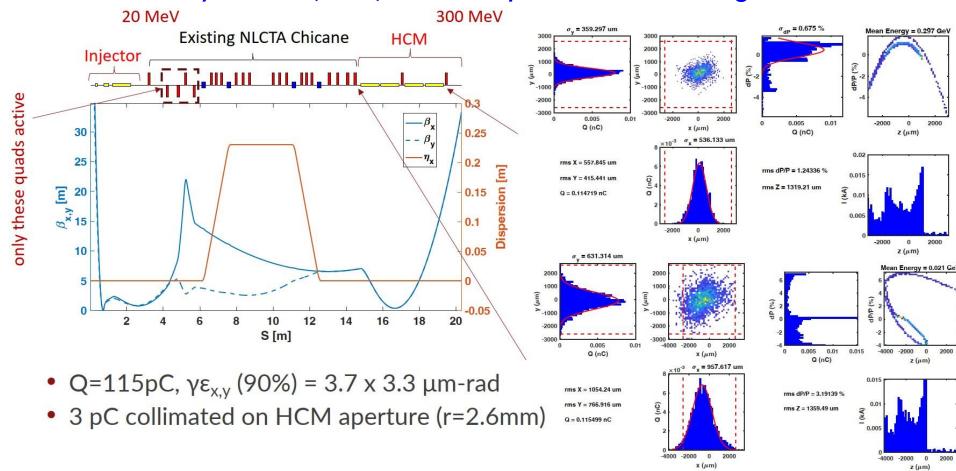
✓ HCM Linac



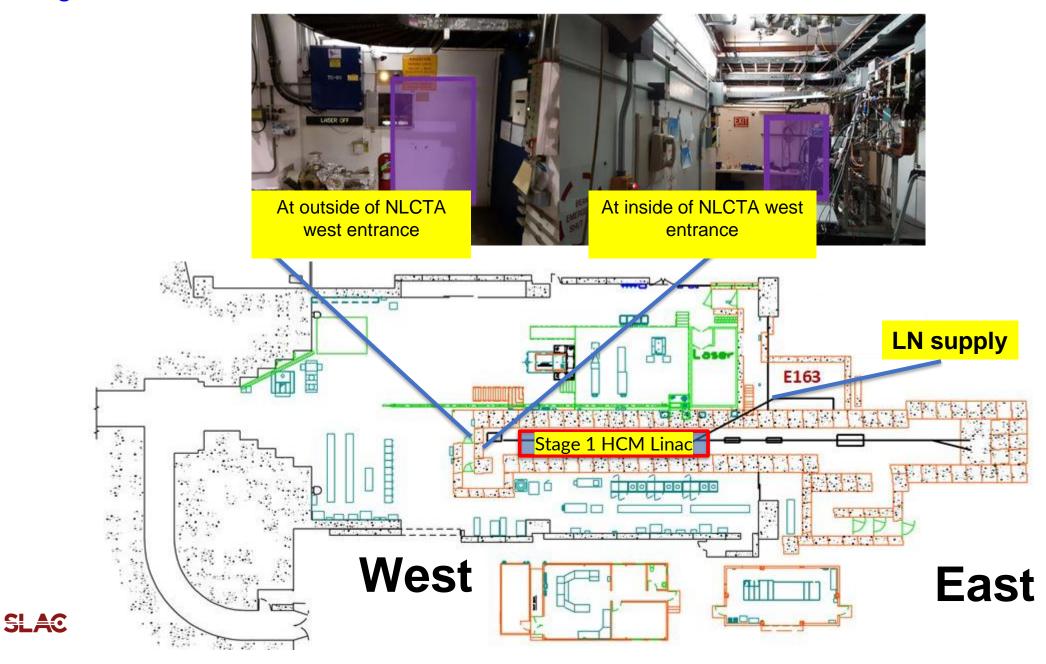
- Stage 1: Demonstration of C³ Structure Performance at Full Beam Loading.
 - Test a C³ half Cryomodule (HCM) at full C³ equivalent beam loading.



- 2x50 MW C-band RF station needed to be developed.
- About 10% rf transmission loss
- With structure match to 43% beam loading
 - 4 structure at 78 MeV/m with no beam
 - 2 structure at 111 MeV/m wo beam and 90 MeV/m with 190 mA (C3-250)
 - 1 structure at 157 MeV/m wo beam and 125 MeV/m with 300 mA (C3-550)

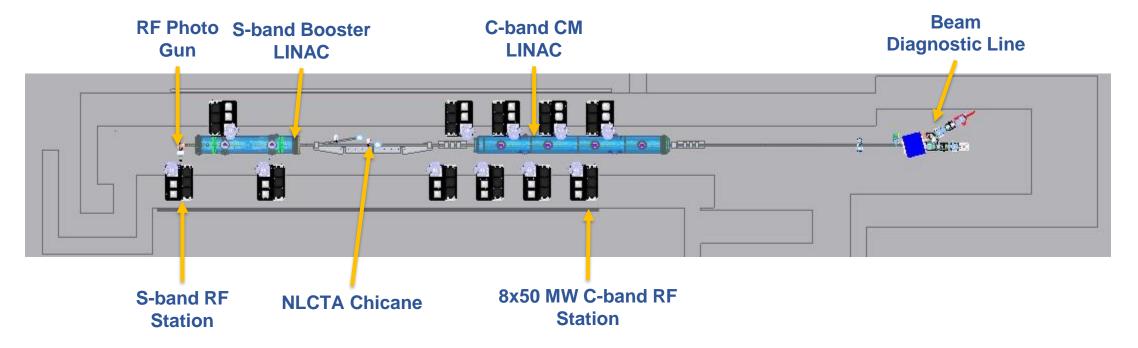


- Stage 1: Demonstration of C³ Structure Performance at Full Beam Loading.
 - o Test a C³ half Cryomodule (HCM) at full C³ equivalent beam loading at SLAC NLCTA.
 - o 2x50 MW C-band rf stations will be developed with repurposing an exiting X-band station modulator.
 - The existing S-band station in NLCTA will be used to power the injector.



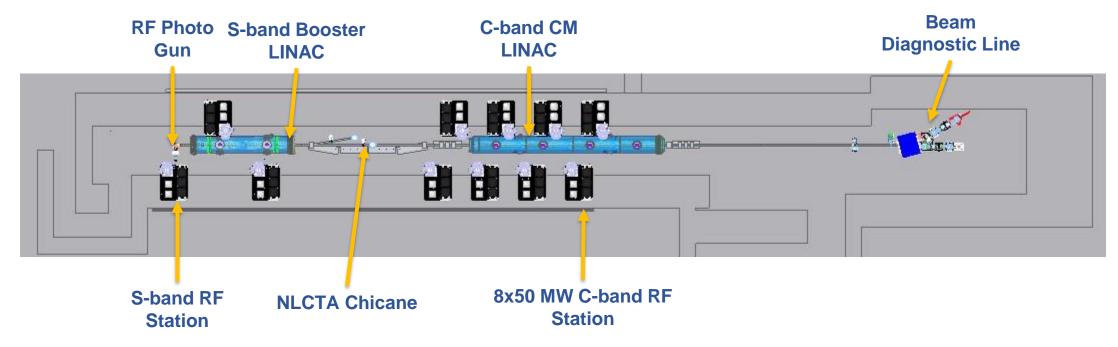
- Stage 1: Demonstration of C³ Structure Performance at Full Beam Loading.
 - Test a C³ half Cryomodule (HCM) at full C³ equivalent beam loading at SLAC NLCTA.

Stage 1 will use NLCTA as it is.

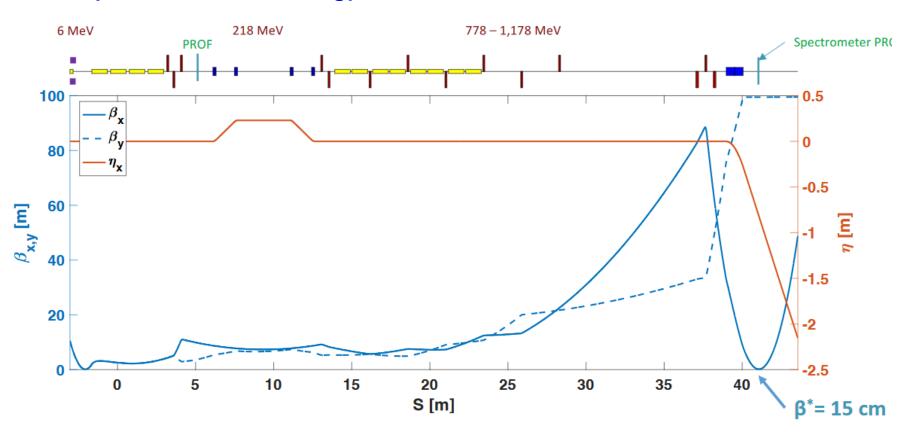


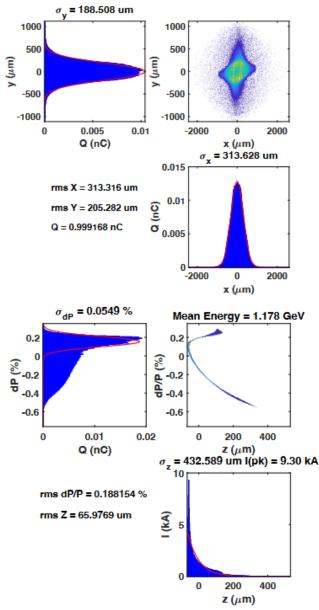
- Stage 2: First Scale-up Demonstration of A C³ CryoModule Linac
 - A high brightness photo injector with at least two bunches and various space
 - A large aperture S-band booster linac
 - A full C³ CM Linac.

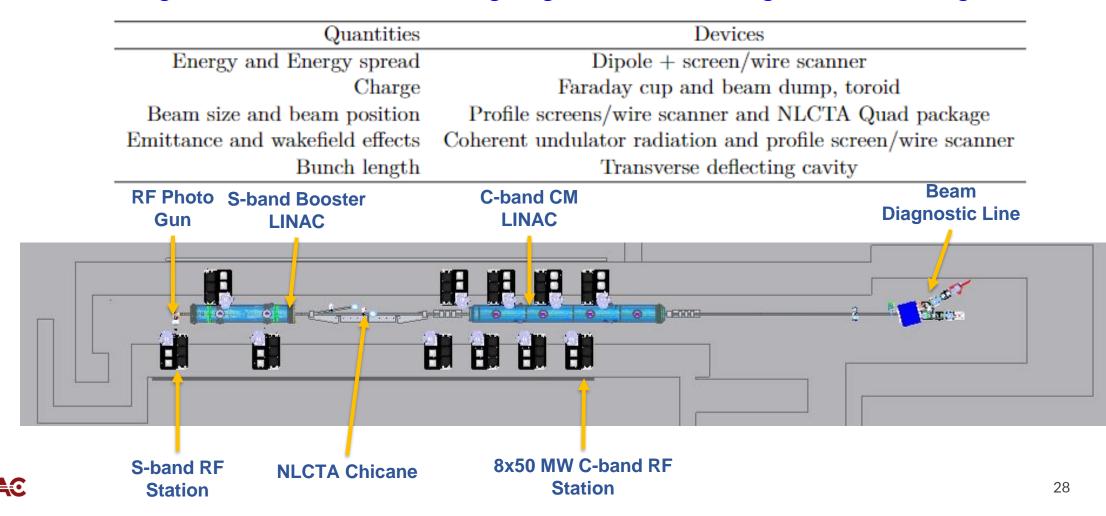
- o Production of the cryomodule assembly with in-situ pre-beam alignment ≤500 μm
- Demonstration of the acceleration structure in the full CM LINAC reaching unloaded gradient of 155
 MeV/m at 250 ns
- Development of high brightness RF photo injector with an LCLS-like S-band RF gun and an S-band booster LINAC re-using the Stage 1 HCM cryostat
- Evaluation of cryomodule LINAC beam performance in the presence of wakefields, and benchmarking with the beam simulation

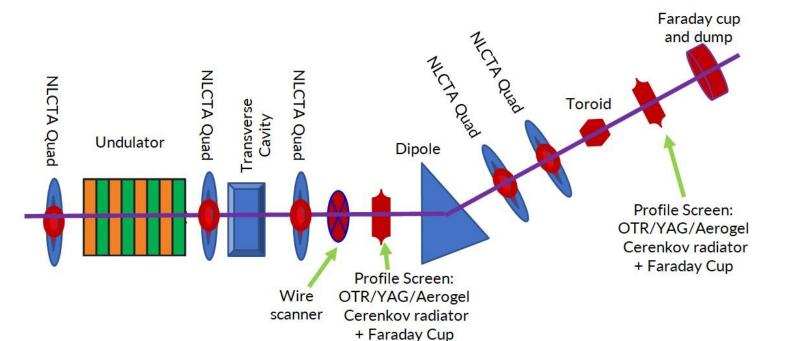


- Stage 2: First Scale-up Demonstration of A C³ CryoModule Linac
 - A high brightness photo injector with at least two bunches and variable bunch space
 - A large aperture S-band booster linac: repurpose the stage 1 half CM with 4x1m S-band structures
 - o A full C³ CM Linac.

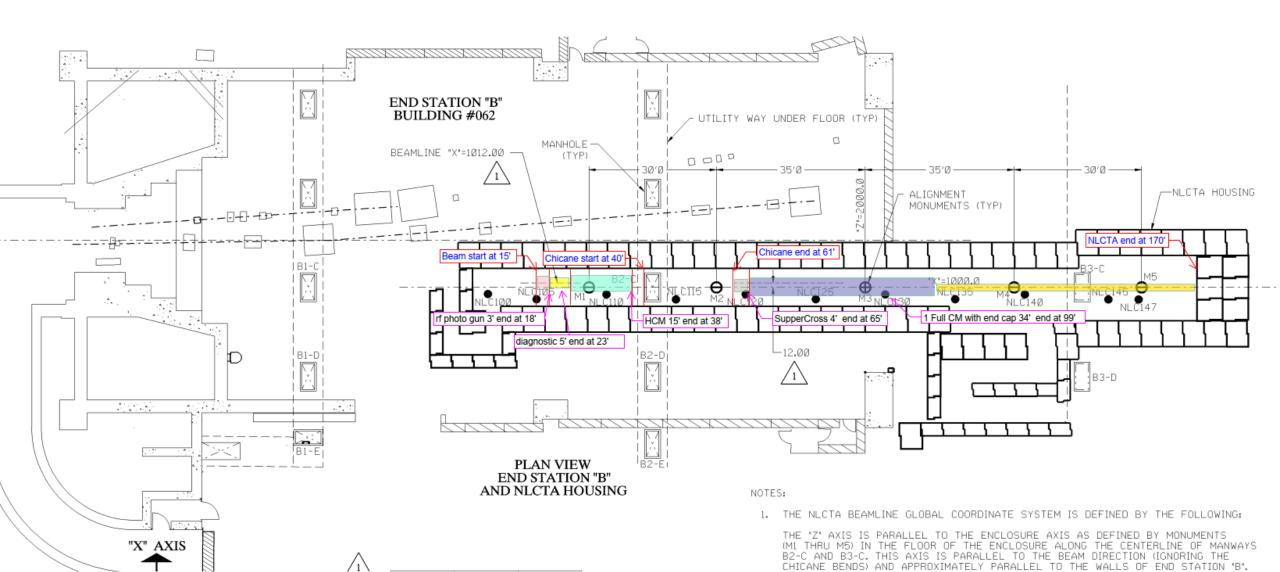



- Stage 2: First Scale-up Demonstration of A C³ CryoModule Linac
 - 8x50 MW C-band RF station will be built.
 - With zero beam loading and about 10% RF transmission loss
 - 1 klystron per structure: 8 structures at 113 MeV/m
 - 2 klystrons per structure: 4 structures at 160 MeV/m


- Stage 2: First Scale-up Demonstration of A C³ CryoModule Linac
 - The preliminary simulation shows a 1nC beam of 2μm.rad emittance is possible at a final energy of 1.2 MeV.



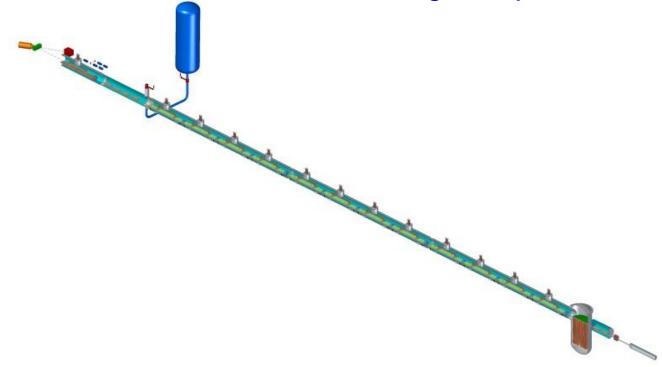
- Stage 2: First Scale-up Demonstration of a Full C³ CryoModule
 - o Beam diagnostics at the LINAC end: Long range wakefield and longitudinal short range wakefield



- Stage 2: First Scale-up Demonstration of a Full C³ CryoModule
 - o Beam diagnostics at the LINAC end: Long range wakefield and longitudinal short range wakefield

Quantities	Devices
Energy and Energy spread	Dipole + screen/wire scanner
Charge	Faraday cup and beam dump, toroid
Beam size and beam position	Profile screens/wire scanner and NLCTA Quad package
Emittance and wakefield effects	Coherent undulator radiation and profile screen/wire scanner
Bunch length	Transverse deflecting cavity

Stage 2: NLCTA refurbishment will be required.


Site preparation:

- a) The NLCTA bunker enclosure and its roof will be cleaned out.
- b) The current control racks for the current S-band and the X-band station 0 &1 will be removed.
- d) Drilling 11 penetrations on the bunker roof for the C-band RF waveguide, and installation of support structures for the 11 RF stations.
- Utilities: installation of 480V AC power and low conductivity water (LCW) distribution for 11 RF sources on the NLCTA roof, ventilation for N2 gas, electronic racks, and cables. 480V power is available from a nearby sub-station. LCW is available from 2 pressure limiting locations inside and outside ESB.

- Stage 3: Integrated Demonstration Towards the C³ main LINAC
 - Cryogenics performance study at the C³ full flow rate
 - Mapping out of transverse short range wakefield

O Structure and magnet pre-beam alignment in each CM as well as between through multiple CMs

- Stage 3: Integrated Demonstration Towards the C³ main LINAC
 - Cryogenics performance study at the C³ full flow rate
 - Mapping out of transverse short range wakefield
 - Structure and magnet pre-beam alignment in each CM as well as between through multiple CMs

- Injected bunch of 1nC, 1.5 umrad, and 200 MeV
- Final beam energy 1.7 GeV

Bunch length (rms, μ m)	Off set (μm)	Relative emittance growth (%)
556	500	15
1112	200	13

- Stage 3: Integrated Demonstration Towards the C³ main LINAC
 - The full stage 3 facility requires ~ 70m bunker.
 - The NLCTA will have to be extended by ~ 20m to host the full stage 3 LINAC.

Site	pros	cons		
NLCTA at	continuation of	needs extension		
SLAC	Stage 1&2	of current bunker		
IR12 at	ample space of exisiting	these infrastructures		
SLAC	tunnel with shielded	were de-actived since		
	large high bay area	the end of BarBar program.		
	and control room	Will require investment		
	on either side	to re-establish		
FAST at	well established operational	difficult to leverage		
Fermilab	accelerator infrastructure	the investment of		
	including cryogenic system	Stage 1 and Stage 2		
LINAC Extension	ample footprint with	possibility for		
Area (LEA) at	reasonable infrastructure	PWFA R&D is		
ANL	help to deepen synergy with AWA and APS	not yet clear		

- ✓ Advanced accelerator concept study like staging PWFA
- Full energy linac injector for storage ring.

Stage 3: 3½ CM

- A 3 CM LINAC ~ 2.7 GeV reach over about 30 meters
 - ✓ Independent energy tunning of beamlines in an x-ray FEL undulator farm
 - ✓ Compact and cost-effective x-ray FEL.

Stage 2: 1½ CM

- A single CM linac with 8x50 MW klystrons of ~ 0.9 GeV over ~9 m
 - ✓ Medical: VHEE therapy
 - ✓ Compact high energy (100s keV to 1MeV) Compton source
 - ✓ Lower energy injector for booster ring
 - High brightness injector feasibility

Stage 1: ½ CM

A half CM with 2x50MW klystrons – 0.32 GeV over 5 m

- ✓ Advanced accelerator concept study like staging PWFA
- Full energy linac injector for storage ring.

Stage 3: 3½ CM

- A 3 CM LINAC ~ 2.7 GeV reach over about 30 meters
 - ✓ Independent energy tunning of beamlines in an x-ray FEL undulator farm
 - ✓ Compact and cost-effective x-ray FEL.

Stage 2: 1½ CM

- A single CM linac with 8x50 MW klystrons of ~ 0.9 GeV over ~9 m
 - ✓ Medical: VHEE therapy
 - ✓ Compact high energy (100s keV to 1MeV) Compton source
 - ✓ Lower energy injector for booster ring
 - ✓ High brightness injector feasibility

Stage 1: ½ CM

A half CM with 2x50MW klystrons – 0.32 GeV over 5 m

SLAC

- ✓ Advanced accelerator concept study like staging PWFA
- ✓ Full energy linac injector for storage ring.

Stage 3: 3½ CM

- A 3 CM LINAC ~ 2.7 GeV reach over about 30 meters
 - ✓ Independent energy tunning of beamlines in an x-ray FEL undulator farm
 - ✓ Compact and cost-effective x-ray FEL.

Stage 2: 1½ CM

- A single CM linac with 8x50 MW klystrons of ~ 0.9 GeV over ~9 m
 - ✓ Medical: VHEE therapy
 - ✓ Compact high energy (100s keV to 1MeV) Compton source
 - ✓ Lower energy injector for booster ring
 - ✓ High brightness injector feasibility

Stage 1: ½ CM

A half CM with 2x50MW klystrons – 0.32 GeV over 5 m

SLAC

- ✓ Advanced accelerator concept study like staging PWFA
- ✓ Full energy linac injector for storage ring like CHESS injector (6GeV)

Stage 3: 3½ CM

- A 3 CM LINAC ~ 2.7 GeV reach over about 30 meters
 - ✓ Independent energy tunning of beamlines in an x-ray FEL undulator farm
 - ✓ Compact and cost-effective x-ray FEL.

Stage 2: 1½ CM

- A single CM linac with 8x50 MW klystrons of ~ 0.9 GeV over ~9 m
 - ✓ Medical: VHEE therapy
 - ✓ Compact high energy (100s keV to 1MeV) Compton source
 - ✓ Lower energy injector for booster ring
 - ✓ High brightness injector feasibility

Stage 1: ½ CM

A half CM with 2x50MW klystrons – 0.32 GeV over 5 m

SLAC

C³Demo Timeline

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Stage 1						
HCM development						
RF stations						
Injector						
Diagnostic beamline						
Control						
Facility preparation						
Installation						
Cryogenics						
HCM linac beam based measurement						
Stage 2						
NLCTA Support						
photo Injector						
Full CM						
Chiane and end linac beamline						
Control						
Full Linac beam based measurement						
Stage 3						

Summary

- The overall objective of this proposal is to mature the RF and cryomodule technology and complete the beam dynamics investigation for the C³ main LINAC.
 - design and analyze the main LINAC cryogenics
 - complete the design and construction of the cryomodules
 - demonstrate the accelerating structure with beam and wakefield damping
 - investigate the C³ main LINAC machine and beam dynamics performance.
- The C³ Demonstration R&D Plan will
 - provide key inputs for the conceptual design of the C³ Higgs Factory.
 - open up significant new scientific and technical opportunities based on the C³ accelerator technology.

Thank you so much!

Questions?

