

Reconstruction of long-lived particles with the ILD at the ILC

Jan Klamka, University of Warsaw

Long-lived particles (LLPs)

- Many states within the SM already have macroscopic lifetimes
- Various BSM models predict LLPs: e.g. SUSY particles, axion-like particles, heavy neutral leptons, dark photons, exotic scalars...
- Multiple searches at the LHC, but:
- \rightarrow LHC is mostly sensitive to high masses and mass splittings
- → complementary region could be probed at e⁺e⁻ colliders (small masses, mixing, mass splittings, etc.)

International Large Detector (ILD)

- \bullet Experiment proposed for the International e^+e^- Linear Collider (ILC)
- ILC baseline centre-of-mass energy: 250-500 GeV, possible extension to 1 TeV $\,$
- The core of ILD tracking systems is a time projection chamber (TPC) $\,$

Background reduction

- Focus on LLP reconstruction in the **TPC volume**
- Due to detector- and reconstruction-related effects, many artificial vertices found in overlay apply cuts on:
- → tracks opening angle and curvature ratio (reject false vertices from split tracks)
- → distance from vtx to first track hit, relative to the track length (reject randomly intersecting tracks)
- \rightarrow number of degrees of freedom in track (reject short tracks)

Overlay background event example

Final selection

- Overlay background reduction at the level of ${\sim}10^{-9}~required$
- \bullet Limitted MC statistics: efficiency estimated assuming cuts used are independent
- ${\boldsymbol{\cdot}}$ Cuts on the p_T , distance between first hits in tracks, distance between centres of

- → almost continous tracking
- \rightarrow promissing for the LLP studies

Test signal scenario

- Most challanging case: **small-boost, low-p**_T **track pair, not pointing towards IP** Inert Doublet Model (IDM) used as a test scenario:
- \bullet four additional scalars, including two neutral: A (heavier) and H (lighter; stable dark matter candidate)
- $\boldsymbol{\cdot}$ A can be long-lived for $\boldsymbol{\mathbf{small}}\ \boldsymbol{\mathbf{mass}}\ \boldsymbol{\mathbf{splittings}}$ between A and H
- benchmark scenarios: $m_A = 155 \text{ GeV}, c\tau = 1 \text{ m}, m_A m_H = 1, 2, 3, 5 \text{ GeV}$

Vertex reconstruction

Strategy

- Approach as simple and general as possible, to cover wide range of possible scenarios
- Consider tracks in pairs
- As the TPC is not sensitive to track direction:
- → use both track direction (charge) hypothesis for vertex finding

+ vtx

> vtx ←●→

distance

helix-circles give total rejection at the level of ~ 10^9 (~ 10^{10}) for $\gamma\gamma \rightarrow had.$ (e⁺e⁻ pairs)

Results

For decays within TPC acceptance

$\Delta m = m_A - m_H$	$1~{ m GeV}$	$2~{ m GeV}$	3 GeV	5 GeV
Signal selection efficiency	3.9%	37%	52.2%	60.4%
Purity	96.4%	97.4%	98.8%	98.6%

• Efficiency: reconstructed vertex within **30 mm** from the true vertex

• Signal **selection efficiency** depends strongly on the **mass splitting** (Z^* virtuality)

 $\bullet \Delta m$ = 1 GeV scenario beyond reach after selection

TPC vs. all-silicon tracker

- Alternative ILD design was recently implemented for tests
- TPC replaced by a **silicon tracker** modified from the Compact Linear Collider detector (CLICdet) outer tracker design
- One barrel layer added and endcap layers spacing increased w.r.t. CLICdet
- Tracking algorithm designed for CLICdet used for reconstruction at all-silicon ILD

- → consider opposite-charge track pairs only
 → select pair with closest starting points
- Reconstruct vertex **in between points of closest approach** of helices
- Require that distance between helices is smaller than 25 mm

Overlay background

- The e^+e^- beams are a source of real and virtual photons, whose interactions produce
- $\cdot low-p_T hadrons$
- $\cdot e^+e^-$ pairs
- These processes can occur simultanously to physics event (and **overlay** on it) However, with ~1.05 ($\gamma\gamma \rightarrow$ had.) and ~1 (e⁺e⁻ pair) events expected per bunch crossing, they can also constitute background by themselves
- \rightarrow they have to be taken into account in the low-p_T LLP searches as separate background

- Vertex reconstruction driven by track reconstruction efficiency
- \bullet Performance similar to baseline design (TPC) near the beam axis
- Smaller number of hits available \rightarrow efficiency drops faster with vertex displacement
- At least 4 hits required for track reconstruction \rightarrow **limited reach**
- \bullet For large decay lengths, efficiency significantly higher for "standard" ILD with TPC

Track reconstruction efficiency