C-Band RF Cavity Development for Photocathode Testing and for HOM Absorber Testing

Haoran Xu, Petr M. Anisimov, Dongsung Kim, and Evgenya I. Simakov, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

5.712-GHz Photoinjector Design Overview

GOAL

- Room-temperature cathode field exceeding 100 MV/m.
- Equal surface peak electric field in individual cells.
- 180-deg RF phase difference between individual cells.
- Critical coupling at room temperature.

INDIVIDUAL CELL PROFILE

Designs of the individual cell profiles and the coupling slots to the cells were provided by SLAC and UCLA.

DESIGN TOOLS

- CST Frequency Domain Solver.
- SOLIDWORKS

Docign paramotors

Finalized cavity design

Local peak electric field normalized to the peak electric field on the beam axis, E_m . Local peak magnetic field normalized to (E_m / Z_0) , where $Z_0 = 377 \Omega$.

(kA/m) 234	(MV/m) 128	Electric field local peak values	
		Cathode cell overall	1.20
117	0	Cathode plane	0.94
0	-128	Cathode cell coupling slot	0.48
		Full cell overall	1.20
		Full cell coupling slot	0.30
		Choke	0.059

Operating frequency f_0	5.712 GHz	
Cathode cell length I_{cath} / ½ λ_0	0.6	
Full cell length I_{full} / ½ λ_0	1.0	
Full cell shunt impedance R _{sh} (r _{sh})	3.09 MΩ (118 MΩ/m)	
Cathode cell unloaded quality factor Q _{0,cath}	14695	
Full cell unloaded quality factor Q _{0,full}	13603	
Entire-cavity unloaded quality factor Q _{0,cav}	14170	
Cavity coupling factor $oldsymbol{eta}$	1.00	
RF power for 100-MV/m cathode field	1.4 MW	Ρ
RF power for 240-MV/m cathode field	8.0 MW	5

sentation: May 17, at 14:40 -3002 – Almanor (SLAC)

Tuning of individual cells

Adjusting the minor radius of the sidewall profile in

Fabrication

- Cavity profile with significant complexity.
- Copper cavity machined in halves, and then brazed together with the flanges.
- One pair of tuners used for the cathode cell and the full cell, respectively, on the opposite sides, in the horizontal direction.
- Beam pipe diameter expanded for accommodating the electron beam transverse size variation over the course of the initial transport.

5.712-GHz two-cell cavity with HOM absorber GOAL

- Performance of the HOM absorber coating, i.e., NiCr, vs. high-gradient breakdowns.
- High-gradient testing of the RF design.
- Critical coupling, π -mode.

INDIVIDUAL CELL PROFILE

Designs of the individual cell profiles and the coupling slots to the cells were provided by SLAC and UCLA.

Magnetic field local peak values			
Cathode plane	0.55		
Cathode cell coupling slot	0.69		
Full cell coupling slot	0.66		
Choke	0.035		

Waveguide splitter design

POWER DIVIDING

Adjusting "choke" size c. Smaller choke size limits the power going into the cathode cell.

PHASE DIFFERENCE

Adjusting dimension A of the waveguide. Greater dimension A increases the phase difference.

REFLECTION MINIMIZATION

Adjusting dimension B of the waveguide to minimize the reflection at the input port, i.e., |S33|.

1.0×10⁶ S/m **Presentation: May 17, at 11:20** 51/3-305 - Kavli 3rd Floor (SLAC) ic field local peak values

5.712 GHz

118 MΩ/m

13500

13525

1.00

4.4 MW

FUNDAI	MENTAL MODE V	VITH 100-M	V/m GRADIENT		
				Electric field local peak values	
				Cavity overall	1.48
				Coupling slot	0.28
				Waveguide	0.086
(kA/m)	A/m)	(MV/m) 247	(MV/m)	Magnetic field local peak values	
510		277		Coupling slot	0.70
155		0		Waveguide	0.075
0		-247			

Horn taper optimization

PORT 4

The input port has the dimensions of the standard WR187 waveguide.

PORT 3

The output port matched the waveguide splitter design.

REFLECTION MINIMIZATION

- Adjusting the fillet sizes r_1 , r_2 , r_3 , and r_4 , and the taper section length *I*, to minimize the reflection at the WR187 waveguide port.
- Minimized reflection achieved below -60 dB.

HOM DAMPING BY NICr DISSIPATION (E-FIELD NORM. MAG. SHOWN)

Fabrication

- Cavity profile with significant complexity.
- Copper cavity machined in quadrants, coated with NiCr layers, and then brazed.
- One tuner for each quadrant.

port 4

0.872" ¹/₂×1.872"

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA.

89233218CNA000001

Photoinjector cavity work supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory, under project number 20230011DR. HOM-damping cavity work supported by the U.S. Department of Energy, under Contract No.

The 2023 International Workshop on Future Linear Colliders (LCWS2023) SLAC, Menlo Park, CA, USA 15-19 May 2023

haoranxu@lanl.gov LA-UR-23-24871