

# **BSM physics at ILC250/500**

J. P. Márquez<sup>†</sup> Working team: A. Irles<sup>†</sup>, A. Saibel, R. Poeschl<sup>o</sup>, F. Richard<sup>o</sup> and Y. Okugawa<sup>o</sup> <sup>†</sup>AITANA Group (IFIC/CSIC/UV) , <sup>◊</sup>IJCLab Orsay

### ILC Run Plan & Physical Observables for Heavy-Quark Production



#### **Higgs factory & ff production:**

The ILC features e<sup>-</sup>e<sup>+</sup> collisions at 91.2 GeV (Z-Pole), **250 GeV, 500 GeV** and 1 TeV. Both beams (e<sup>+</sup>, e<sup>-</sup>) are polarised (80% e<sup>-</sup>, 30% e<sup>+</sup>). Beam polarization enables the inspection of the chiral structure of nature (left/right helicities).









#### **Experimental observables:**

- Hadronic fraction (**R**<sub>q</sub>):
  - Quark ID (flavour tagging).
  - Angular measurement *possible*, but not needed.
- Forward-Backward Asymmetry (**A**<sub>FB</sub>):
- Quark ID + charge measurement.  $A_{FB}^{Exp} = \frac{N_F N_B}{N} R_a^{Exp} =$
- Angular measurement needed.

Normalised & Differential observables are highly preferred: Control of systematic uncertainties



 $\sigma_{hadron}$ 

 $\frac{\int_0^1 \frac{d\sigma}{d\cos\theta} d\cos\theta - \int_{-1}^0 \frac{d\sigma}{d\cos\theta} d\cos\theta}{\int_{-1}^1 \frac{d\sigma}{d\cos\theta} d\cos\theta}$ 

 $A_{\rm FB}$  =

### Gauge-Higgs Unification (GHU) Models: Concepts & Phenomenology



 $ds^2 = g_{MN} dx^M dx^N = e^{-2\sigma(y)} \eta_{\mu\nu} dx^\mu dx^\nu + dy^2$ 

- Unify all forces under the same gauge group in a Randall-Sundrum (RS) metric. The RS metric features a warped extra dimension:
- Conformal symmetry ("scale symmetry").



**Only one parameter**,  $\phi_{H}$ , determines the projection of the 5D fields, fixing all physical effects: • m<sub>κκ</sub>~10 TeV (*only* indirect measurement). • EW couplings and Weinberg's angle ( $\theta_W^0$ ).  $g_Y^{
m 5D}$ 



 Compactified in a ring-shape. **KK-resonances**  $(Z', \gamma')!$ 

• Two branes (IR & UV), at opposite points. • Orbifold b. c. in both parts of the circle.



Two kinds of models with different gauge group structure:

• Models A [1]: More sensitive to RH helicities.

Hatanaka, Y. Hosotani, and Y. Orikasa. Distinct signals of the gauge-Higgs unification in e<sup>+</sup>e<sup>-</sup> collider experiments. Phys. Lett. B, 775:297–302, 201 Models B [2]: More sensitive to LH helicities. [2] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa, N. Yamatsu. Fermion pair production at e<sup>-</sup>e<sup>+</sup> linear collider experiments in GUT inspired gauge-Higgs unification.

### Preselection of Signals & Use of PID

Phys. Rev. D, 102(1):015029, 2020.

#### **Experimental procedure:**

#### 1)Preselection:

To remove backgrounds. Mostly radiative return.

#### 2)Flavour tagging:

Using standard ILD Tool: LCFI+.

#### **3)Jet charge measurement:**

VTX method: Use all secondary tracks.

Kaon method: Use TPC's kaon PID

**Double Tag Method: Only events with two** opposite-charged identified jets are accepted

#### How to improve the use of TPC PID:

1) Including it into the Flavour Tagging process.

• Use the PID to count particles in secondary vtcs. 2) Improve the PID performance itself.





## **Optimization of LCFI+ & Implementation of PID**

#### About LCFI+[4]:

- Based on Boost Decision Trees (BDTs).
- Sequence: Vertexing, Jet clustering, Making of NTuples and flavour tagging.
- Heavily relies on displaced vertices.
- 4 categories: number of vtx. and/or pseudovtx.
- 3-class classifier: b jets, c jets & uds jets.

#### **Adding PID:**

- ID of secondary tracks by using the significance wrt. the Bethe-Bloch formula value for a certain particle.
  - 3 new variables: Kaon, Proton & Pion.

#### **Particle Swarm Optimization**:

Gradient-free, bio-inspired, stochastic, population-based algorithm that optimises any kind of process towards a certain goal.

It start with N "particles" (in our case: *configurations of the BDTs*).





())璺///

Iterate until convergence

- From dE/dx to dN/dx (cluster counting).
  - ~35% improvement in K/p separation power[3].
  - ~25% smaller standard deviation for each distribution.

The PID is being rewritten to simulate the improvements expected from the use of dN/dx

[3] Einhaus U, Krämer U, Malek P. Studies on Particle Identification with dE/dx for the ILD TPC arXiv:1902.05519. 2019 Feb 14.

Then:

1) The BDT runs with the configuration of the particle.

2) When finished, each particle gets a performance score.

 Filtered with statistical tests: Removal of biased results. 3) Move to a new configuration, influenced by the best ones.

And optimisation is perform for each category. Different weights for dE/dx and dN/dx.

[4] Suehara T, Tanabe T. LCFIPlus: a framework for jet analysis in linear collider studies. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometer KYUSHU ICEPP Detectors and Associated Equipment. 2016 Feb 1;808:109-16

Iteration #

### **Experimental Prospects for GHU**

**Results from full simulation studies using ILCSOFT. ILD Note on preparation!** 





### **PID in Flavour Tagging and Charge Measurement**











Combining results from both polarisations, using dNdx for both PID & FT and getting access to 500 GeV allows full discrimination from the SM!

International Workshop on Future Linear Colliders (LCWS2023), 15-19 May 2023, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025 jesus.marquez@ific.uv.es







