

STRUCTURE BASED WAKEFIELD ACCELERATOR (SWFA) FOR LINEAR COLLIDER

CHUNGUANG JING On behalf of the AWA facility at Argonne National Laboratory

May 18, 2023

STRUCTURE WAKEFIELD ACCELERATORS

- > Structures \rightarrow undependable of e- and e+
- Empirical scaling law indicates shorter pulse \rightarrow higher gradient
- ➢ Wakefield → shorter pulses

- Achieve desirable luminosity (scalable energy, beam power, lower vertical emittance, shorter bunch length, etc)
- How to achieve higher efficiency to reduce the site power

SCALABLE TBA ACCELERATION MODULE

• Fast kicker and RF delay for drive beam distribution

UCHICAGO ARGONNELLE CONCEPTION Argonne National Laboratory is a U.S. Department of Energy bis ar U.

SWFA TBA PROGRESS OVER YEARS

TBA R&D

C. Jing, et al, NIMA 898, 72-76 2018), J. Shao, et al, in Proceedings of IPAC2017

SCALABLE CWA ACCELERATION MODULE

6

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

17

SWFA CWA PROGRESS OVER YEARS

BEAM PHASE-SPACE CONTROL

Mesoscopic shaping via phase-space exchange

- Precise control over the phase-space distribution is critical to high-efficiency high-gradient wakefield acceleration
- AWA beamline includes a phase-space exchanger capable of precise temporal shaping at the sub-picosecond scale

measurements

- Applications beyond AAC (e.g. compact coherent light sources)
- Current research focus: improve shaping capabilities – new shapers design, variable collimators, ML-aided optimization

COLLIDER 3TeV 30MW beam power TBA

□ Based on scientifically mature and low cost Dielectric TBA technologies

- Short rf pulse (20ns) for high gradient (e⁺ e⁻ 200MeV/m of effective gradient)
- Modular design \rightarrow easily staged
- Wall plug efficiency (~15%)

DEVELOPMENT PATH

DEMONSTRATE AFLC-SYSTEM IN HIGH FIDELITY

Parameters	AFLC requirements	AWA Current	AWA-II (in plan)
Acceleration mechanism	Dielectric TBA	Structure TBA	SWFA
Drive beam generation	1.3GHz Photogun	1.3GHz Photogun	Multi-photogun system
Drive beam current	65A (32 x 50nC) in pulse, rep. rate 1kHz	65A (8 x 50nC), rep. rate. 10Hz	65A (16 x 50nC), rep. rate. 100Hz
RF Power generation	26GHz 1GW 20ns	11.7GHz 0.6GW 6ns	26GHz 1GW 20ns
Main beam generation	CLIC like	1.3GHz Photogun	11.7GHz photogun
Main beam current	6.5A (0.5nC w/ interval of 77ps)	0.5~10nC single bunch	0.2nC multibunches
Main linac structure	26GHz DLA	1~30GHz accelerator	GHz~THz
Gradient	~350MV/m	Up to 500MV/m	Up to GV/m
Stages	Multiple stages	>2 stages, 2 TBA units/stage	Multiple stages

AWA and its upgrade can be used for AFLC-system high-fidelity demonstration.

NEAR TERM: 0.5GeV DEMONSTRATOR

- Demonstrate key technologies of SWFA based TeV class linear collider
- Fit into AWA's existing bunker
- Potential to be converted to a compact ICS gamma source

NEAR TERM: CWA: ENERGY DOUBLER DEMONSTRATOR

Components needed for integration module

- Drive Beam: Generation of door step profile & BBU control
- Main bean: Design and optimization of the main accelerator optics
- RF: Break section (fundamental mode coupler, HOM coupler, and diagnostics)
- Vacuum: Assess realistic vacuum condition

STEPPINGSTONE FACILITIES

SWFA 15-YEAR ROADMAP

Integral Demonstrator

Key component

Milestone report

SYNERGIES WITH OTHER CONCEPTS/FACILITIES

Synergy to Plasma Wakefield Accelerators:

- 1) Beam shaping (drive and main beam)
- 2) High brightness beam generation

Synergy to other LC concepts:

- 1) Development of advanced RF accelerating structures (high gradient, high shunt impedance).
- 2) Extreme high power rf source.

The Path to 15 TeV

	2025	2030	2035	2040	2045	2050	2055	2060	2065	2070	2075
Linear Collider Higgs Factory 250 GeV	Plannin	g Co	onstructio	on Op	peration						
Linear Collider Higgs Factory 500 GeV			Plannin	<mark>g</mark> Co	onstructio	n Op	peration				
Structure Wakefield Collider 3 TeV	High- Pow. R&D	0.5 GeV Demo	3 GeV Demo	CDR	Plannin	g Co	onstructior	n Ol	peration		
Beam-Plasma Collider 15 TeV	Positron PWFA	Staging Demo	Energy Recovery	BDS R&D	CDR	Buffer	Planning	C	onstructio	n C	peration
Laser-Plasma Collider 15 TeV	Staging Demo	Positron LWFA	Energy Recovery	BDS R&D	CDR	Buffer	Planning	C	onstructio	n C	peration
$\gamma\gamma$ -Plasma Collider 15 TeV	NLQED	FEL R&D	IP Area Design	BDS R&D	CDR	Buffer	Planning	C	onstructio	n C	peration

Wakefield Accelerators are developed in parallel with the operation of Linear Collider Higgs Factories and provided a staged upgrade path to 3 TeV and 15 TeV.

REMARKS

Current Status:

- 1) ANL has one 3-TeV collider concept based on 26GHz short pulse TBA and a 200GHz Colinear wakefield stepping stone facility for the light source application. But many technical issues need to be investigated.
- 2) For TBA, 400MW rf power, staging, etc, have been demonstrated, but high gradient (>300MV/m) and high energy gain (>500MeV) not yet.
- 3) For CWA, TR=5, 300MeV/m, etc, have been demonstrated, but sustainable acceleration in meter scale not yet.

Challenges and Suggestions:

- 1) Many challenging issues have not been worked on or in a slow pace, simply because of the limited resources.
- 2) New directions need to be explored, like THz acceleration, low cost fabrication techniques, etc.
- 3) Grow the community and attract young talents

