Conceptual plan of ILD solenoid magnet manufacture – Onsite winding

Yasuhiro Makida (KEK)

Contents

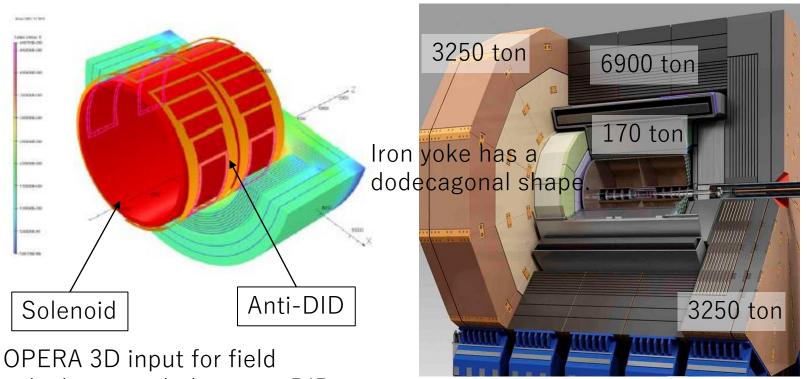
Conceptual Design of the ILD Detector Magnet System

Courtesy

F.Kircher, O. Delferriere, L. Scola (CEA) M. Lemke, A. Petrov, K. Sinram, U. Schneekloth, R. Stromhagen (DESY) B. Curé, K. Elsener (CERN)

Transportation of coil modules from factory Onsite manufacture of cold mass

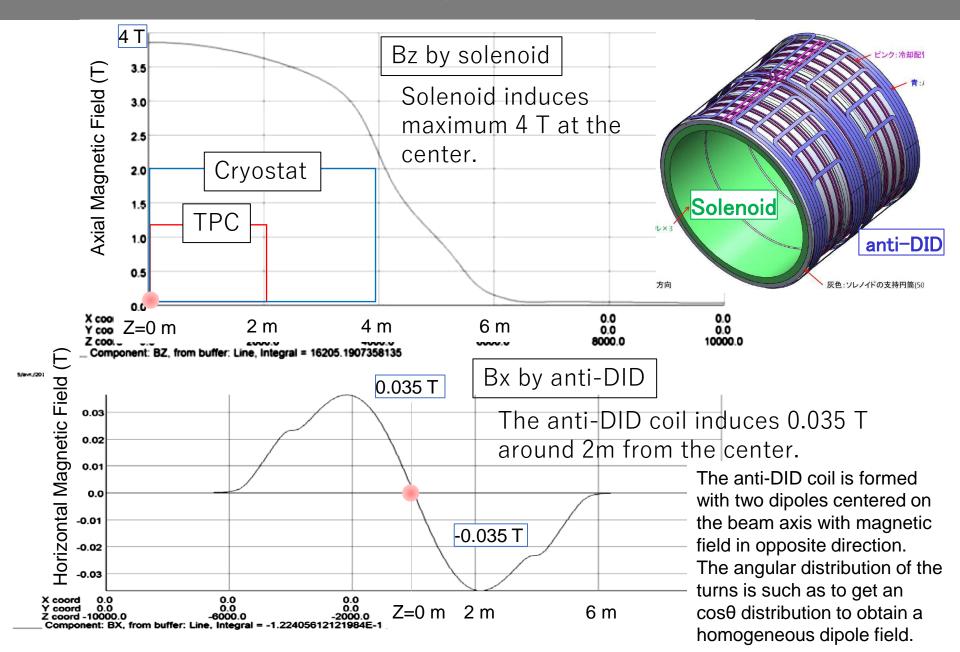
Y. Makida


Conceptual Design of the ILD Detector Magnet System

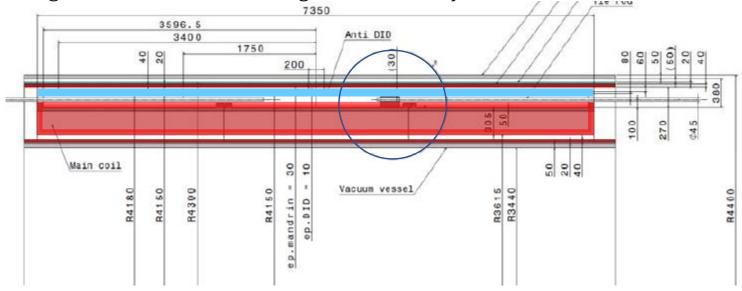
Magnetic Field Requirement for Physics

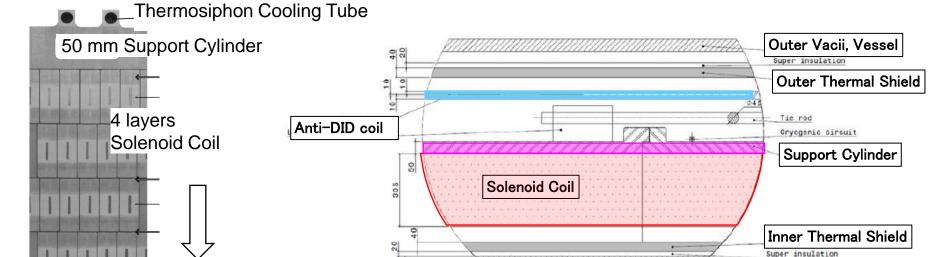
- ILD detector design asks for
 - solenoidal magnet field of 3.5 T and 4 T in maximum central field in a warm aperture of 6.88 m in diameter and 7.35 m in length.
 - Anti-DID (Detector Integrated Dipole) horizontal magnetic field of 0.035 T in maximum within Z=0.3 m.
 - No stringent field homogeneity is required, but an accurate field mapping will be requested before installation of the sub-detectors inside the solenoid. Mainly for the TPC as main tracking detector.
 - For safety reasons, constraints have been put on the fringe field should be less than 50 Gauss at 15 m from the interaction point (IP) in the radial direction.
 - Iron yoke, besides returning and shielding the solenoidal magnetic field, will be instrumented to be used for the detection of muons and for measuring showers.

ILD Magnet General Design


- Many technical solutions successfully used for CMS are proposed for the design of the ILD magnet.
 - Solenoid coil, made of 3 modules, mechanically and electrically connected.
 - A multi-layer coil geometry is required to obtain the 4 T.
- Presence of anti-DID complicates coil design.

calculation including anti-DID


Cut illustration of ILD magnet

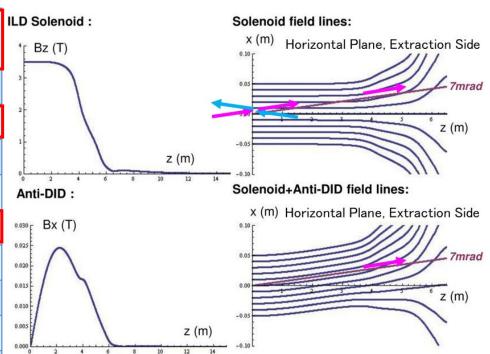

ILD Magnetic Field

ILD Cryostat Configuration

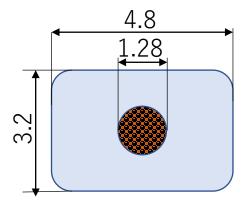
ILD magnet has a standard configuration as a cryostat of a detector solenoid.

Inside

Inner Vacuum Vessel


ILD Solenoid Design (Parameter List)

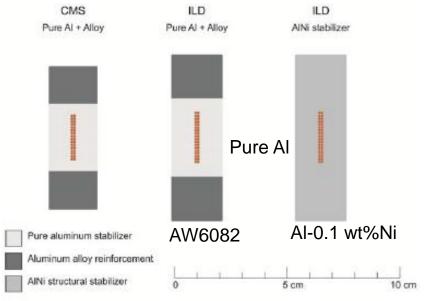
Coil Inner Radius (mm)	3615
Coil Outer Radius (mm)	3970
Coil Length (mm)	7350
Cold Mass Weight (ton)	170
Turn × Layer	309 X 4
Nominal Current (kA)	22.4
Current Density (A/mm ²)	10.6
Central Field (T)	4.0
Maximum Field (T)	4.6
Inductance (H)	9.2
Stored Energy (GJ)	2.3
S.Energy / Cold Mass (kJ/kg)	13
Support Shell Thickness (mm)	50
Cryostat I. R. (mm)	3440
Cryostat O. R. (mm)	4400


- A multi-layer coil geometry is required to obtain the 4 T.
- Similarly to CMS, a 4-layer coil was retained, with a nominal current in the range of 20 kA.
- The 7.35 m length of ILD coil enables to make it in 3 modules, each 2.45 m long.
 Odd number of module is preferable,
 because in case of even number, an interface between modules is set at the coil mid-plane where the axal compressive forces are at a maximum and delamination risk in the module-to-module coupling region should be reduced.
- Each conductor length of 1 layer in 1 module is 2.6 km, that is fine for conductor fabrication. Conductors are spliced every inter layers.
- The coil is wound with inner winding technique, where aluminum alloy support cylinder of 50 mm thickness is used as an external mandrel.

ILD anti-DID Design (Parameter List)

Design Max. Dipole Central Field on Beam Axis (T)	0.035
Position of max Bx within Z (mm)	3000
Maximum Field on Conductor (T)	2.0
Anti DID I.R. (mm)	4160
Anti DID Length (mm)	6820
Nominal Current (A)	615
Current Density (A/mm²)	40
Conductor size (mm x mm)	4.8 x 3.2
Inductance (H)	23
Stored Energy (GJ)	4.4

Anti-DID makes improved flux direction along the beam line. Low energy electrons & positrons, background, are kept inside the beam pipe.


Maximum field in the coil is 2.T, which value is rather higher than effective field of 0.035 T

Nominal current is 615 A, which flow through this small aluminum stabilized conductor.

The anti-DID is located within **the same cryostat** as the main solenoid, and benefits from the cryogenics of the main coil.

ILD Superconducting Conductor

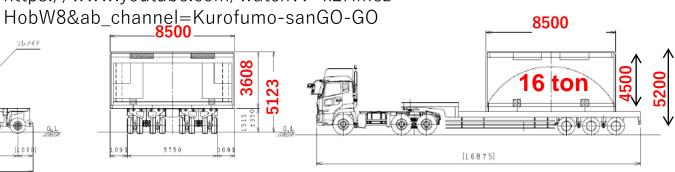
Superconducting Strand in virgin state		
Strand diameter (mm) 1.28		
Cu matrix / NbTi	1.1 ± 0.1	
Jc (A/mm²) @ 4.2 K, 5 T 3300		
Rutherford Cable		
Number of Strand	36	
Cable Transposition Pitch(mm)	185	
Final Conductor (AL clad)		
Overall Dimensions (mm x mm) 74.3 X 22		
Total Length (km)	32	
Spool #, Length (km) per spool	12, 2.6	
Al/NbTi	≈75	
Critical Current (A @ 4.2 K, 5T)	67500	

- Conductor consists of a superconducting Rutherford cable, sheathed in a stabilizer and mechanically reinforces.
- Reinforced conductor makes thinner outer support cylinder
- Two solutions are considered for the reinforcement. ATLAS CS type or CMS type.

Serious Situation (in Karsten's talk "Highlights from Workshop on S/C Detector Magnets") Currently no manufacturer of Al clad conductor in Europe, Japan or US available. All manufacturer have dismounted Al clad machine or doesn't receive its order. Effort to resume started after "Detector magnet work shop".

Transportation of coils from factory

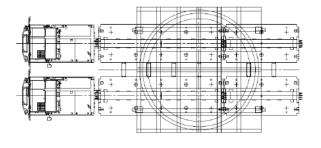
Coil Module Transportation


	Solenoid	Support Cylinder	Anti DID
ID(mm)	7230	7940	8300
OD(mm)	7940	8100	8360
L(mm)	7350	7350	6820
Density (g/cc)	2.7	2.7	2.7
Weight (ton)	168	40	14
1/4(ton)			3.7
1/3 (ton)	56 7	0 14]

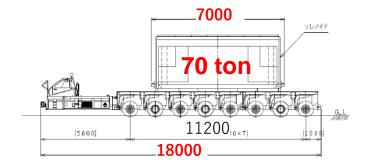
1/3 Solenoid Coil Package		
Dimension	$8500 \times 8500 \times 3608 \text{ mm}^3$	
Weight	90.0 ton (module 70 ton)	
Package No.	3	

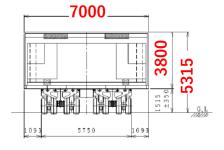
1 Anti-DID coil Package	
Dimension	$8500\times4500\times3500~\text{mm}^3$
Weight	16.0 ton (coil 3.7 ton)
Package No.	4

HobW8&ab_chanr 90 ton 11200,0x7) 18000

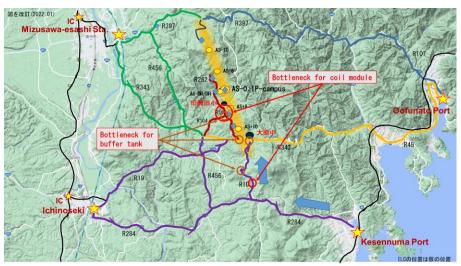


SiD Coil Module Transportation?


	Solenoid	Support Cylinder	Anti DID
ID(mm)	5462	6224	6324
OD(mm)	6224	6324	6404
L(mm)	5586	5586	5586
½ L (mm)		2793	
Density (g/cc)	2.7		
Weight (ton)	133		
½ Weight(ton)	70		


1/2 Solenoid Coil + 1 anti – DID coil Package		
Dimension	$7000\times7000\times3800~\text{mm}^3$	
Weight	90.0 ton (module 70 ton)	
Package No.	2	

Keeping stacking height less than GL4.9 m and width less than 6.0 m is preferable in JP So, SiD modules transportation is costly and need public agreement, too.

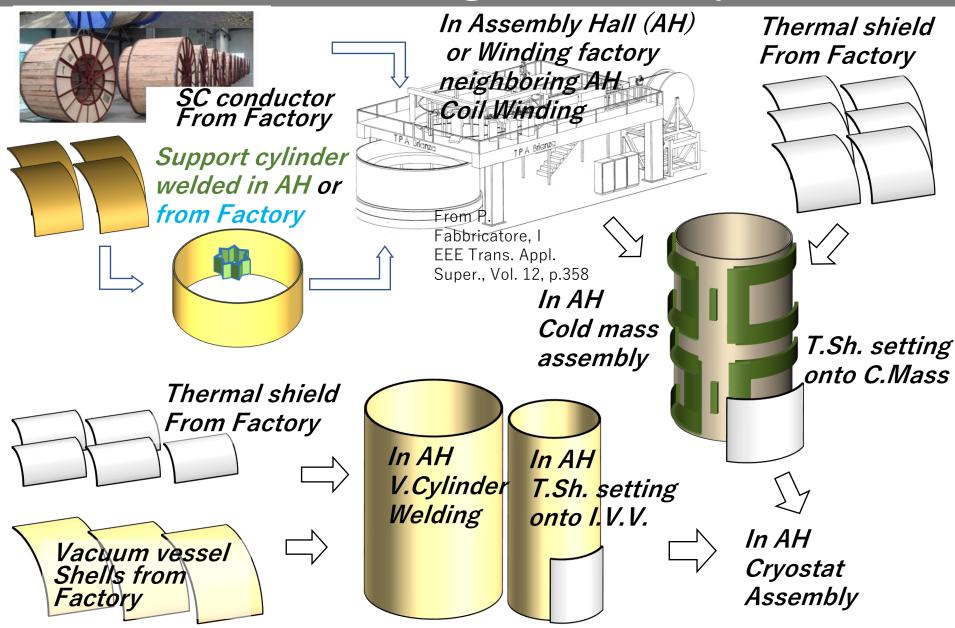


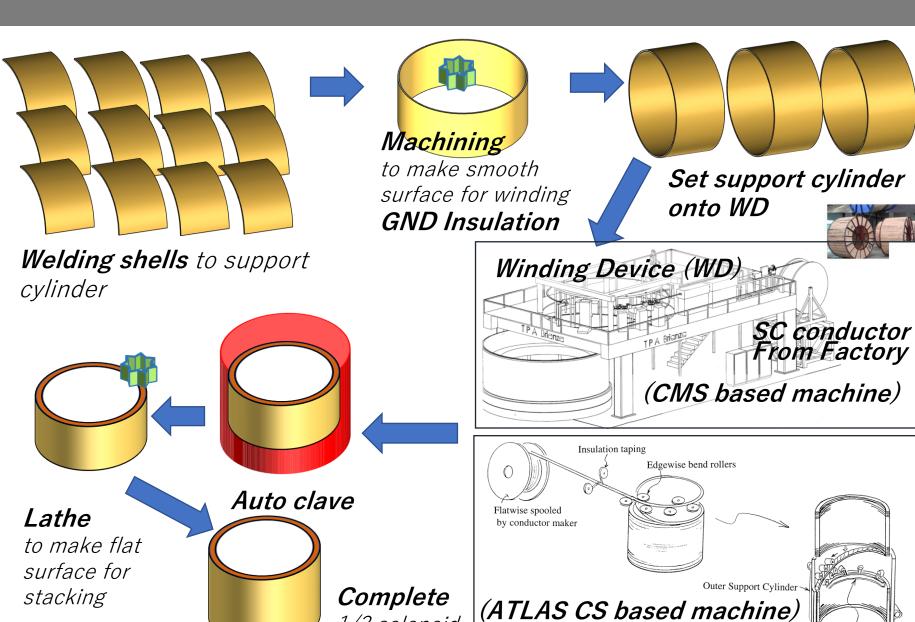


Road condition from a port to IP

Land Transportation is not impossible, but

- There are many traffic signs, signals, poles, lights and fences to be temporally removed.
 - 154 points (upper obstacle 60 points)
 - Trees are not counted.
 - Preparation and recovery cost may be comparable with transportation fee.
- Some bridges must be reinforced.
 - Reinforcement cost may be huge.
- Permissions and public approvals are necessary to occupy the road and removing road instruments.

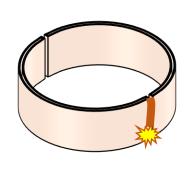


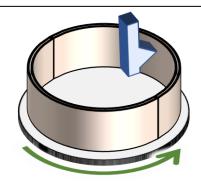

Keeping stacking height less than GL4.9 m and width less than 6.0 m is preferable in JP.

Onsite manufacture of cold mass

Outline of ILD Coil manufacturing process Onsite winding and assembly

Onsite manufacture of cold mass (solenoid coil)




1/3 solenoid

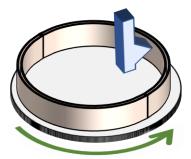
Rotating winding machine

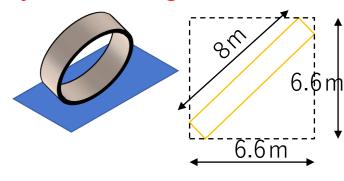
Onsite manufacture of support cylinder

Manufacture 1/3 length of support cylinder

- Plates are welded to 1/3 length cylinders.
- Inner cylindrical surface, outer complicated surface and both end surface are formed by turning and machining process. ~ t50 mm (design)
- A large and combined machining lathe is necessary.

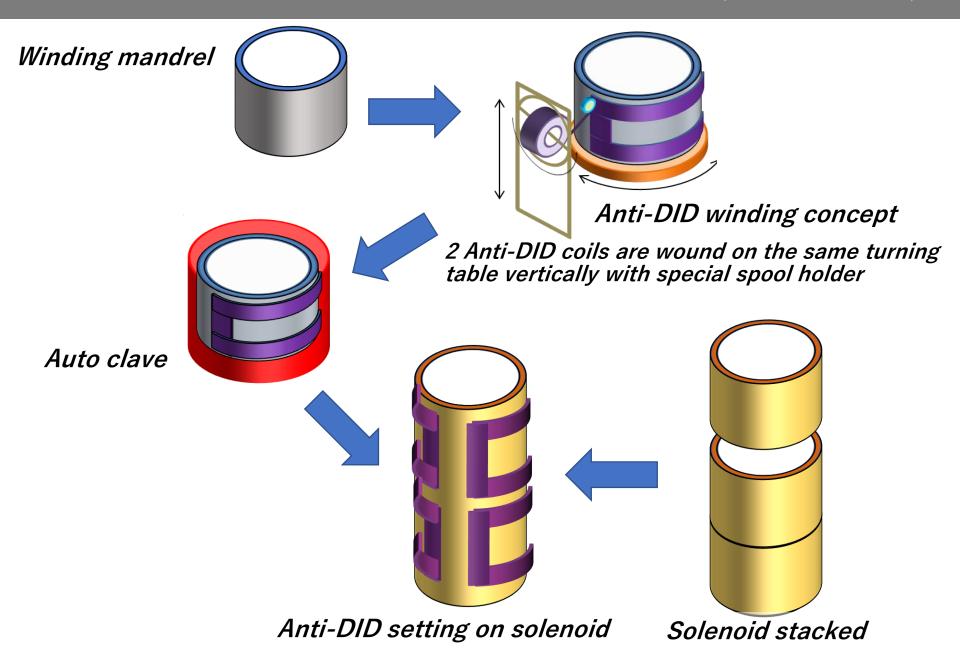
~¥800M ~\$6M ~€5.4M really expensive!

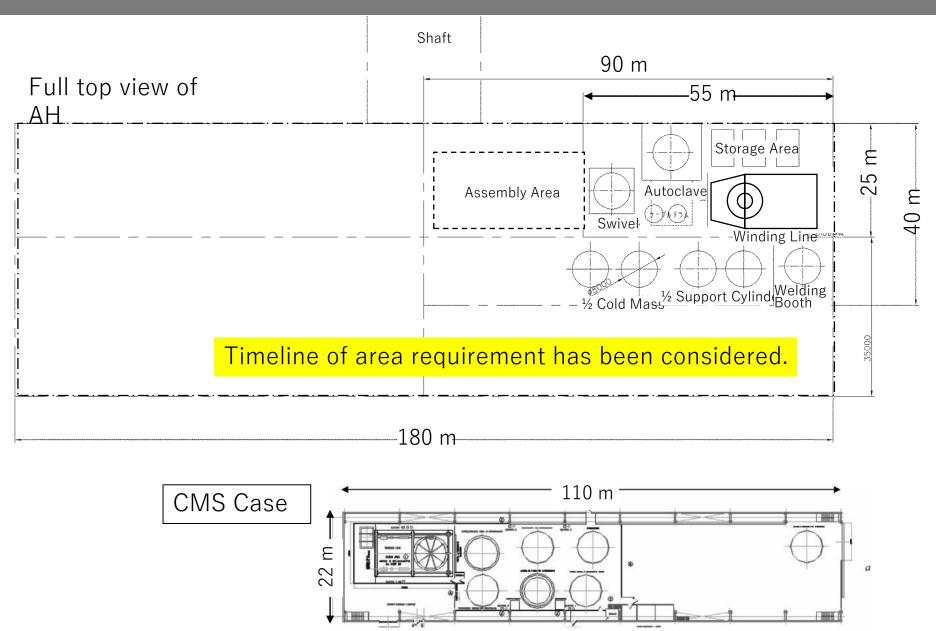

Onsite or In factory need investigation.



Vertical turning lathe

Column type milling machine





Onsite manufacture of cold mass (Anti-DID)

Workplace in AH for SC Magnet

Conclusion

- Technical design of ILD magnet is summarized.
 - solenoidal magnet field of 3.5 T and 4 T in maximum central field in a warm aperture of 6.88 m in diameter and 7.35 m length.
 - Anti-DID (Detector Integrated Dipole) horizontal magnetic field of 0.035 T in maximum in Z=0.3 m
- Conductor consists of a superconducting Rutherford cable, sheathed in a stabilizer and mechanically reinforces.
 - It has the overall dimensions of **74.3** X **22.8** mm². Length demand is 32 km, breakdowns **2.6** km x **12** spools.
 - Two solutions, CMS type, ATLAS CS type, has been considered.
- Magnet manufacture procedure has been investigated with the cooperation by magnet makers, forwarding agents and local support organizations.
 - In the CMS experience, the coil modules were manufactured in the factories and were transported to the experimental site.
 - It is not impossible for ILD coil module to be transported on surface, but its cost and getting public agreement to occupy regional traffic has been promoting its onsite winding.
 - In case of onsite winding, large massive device machining the support cylinder is to be prepared. It's really costly, so we need to transport support cylinder from factories before onsite winding.
 - Anyway many technical methods, direct-internal-multilayer winding should be learned from CMS experience.

Back Up Slide

Cryostat Assembly (Learning by CMS experience)

Cryostat

hese photos are copied from CMS web s