

IHEP high efficiency, high power klystron development

Zusheng Zhou zhouzs@ihep.ac.cn On behalf of CEPC RF power source team May.16, 2023

Outline

◆IHEP&CEPC (Circular Electron & Positron Collider)

♦Klystron

- Design consideration
- R&D Status
 - 1st prototype
 - 2nd (HE klystron) prototype
 - 3rd (MBK) design and fabrication progress
 - C&S band klystron design

IHEP (Institute of High Energy Physics, CAS) *LCWS*2023

BEPC @ Beijing Campus

CSNS @ Dongguan Campus

HEPS @ Beijing Huairong Campus

CEPC @?

CEPC TDR Layout

CEPC as a Higgs Factory: ttbar, H, W, Z, followed by a SppC ~100TeV

RF Power source choice

The Collider beam power is more than 60 MW. The increase in efficiency of RF power sources is considered a high priority issue.

	Tetrodes	IOTs	Klystrons	SSA	Magnetrons
f range:	DC–400MHz	(200–1500)MHz	300 MHz – 1 GHz	DC – 20 GHz	GHz range
P class (CW):	1 MW	1.2 MW	1.5 MW	1 kW @ low <i>f</i>	< 1MW
typical η :	85% - 90% (class C)	70%	65%	60%	90%
Remark	Broadcast technology, widely discontinued			Requires <i>P</i> combination of thousands!	Oscillator, not amplifier!

RF power sources - efficiencies

High power klystrons are the more attractive choice because of their high efficiency, low cost and more stable than IOT and SSA for CEPC collider.

Design consideration

C&S band klystron for CEPC Linac

Parameters	S	С
Freq.(MHz)	2860	5720
Klystron QTY.	33	236
Klystron power(MW)	80	50
RF structure distribution	1-to-2&1-to-4	1-to-2

System overall efficiency

CEPC Collider SRF Wall Plug Efficiency

Wall to PSM power supply/modulator	95%
Modulator to klystron	96%
Klystron to waveguide	75%
Waveguide to coupler	95%
Coupler to cavity	~100%
Cavity to beam	~100%
Overall efficiency	~65%

The critical factor is klystron efficiency

Much higher efficiency, less energy consumption.

Cost consumption

Efficiency impact on operation cost (Only considering operation efficiency of klystrons)

R&D Status

3 or more klystron prototypes

Design Scheme

- Scheme 1: Traditional way for 65% efficiency
- Scheme 2: With high voltage gun (110 kV/9.1 A), low perveance (HE)
- Scheme 3: MBK, 54 kV/20A electron gun (8 beams) (**HE**)

Parameter	Scheme1(1 st prototype)	Scheme2(2 nd)	Scheme3(3 rd)
Freq. (MHz)	650	650	650
Voltage (kV)	82	110	54
Current (A)	16	9.1	20(2.5×8)
Beam No.	1	1	8
Perveance (µP)	0.65	0.25	1.6(0.2×8)
Efficiency (%)	65	~80	>80
Power(kW)	800	800	800(100×8)

1st prototype milestone

- Oct. 2017 Design report
- ◆ May 2018 Mechanical design review
- ◆ Mar. 2019 Window fabrication
- ♦ Apr. 2019 Collector brazing
- ♦ Sep. 2019 Prepressing of electron gun
- Oct. 2019 Klystron bake out
- ◆ Dec. 2019 Delivered to IHEP
- ♦ Mar. 2020 High power test at IHEP

Cavity brazing and cold test

Cavity brazing

Leak test

Cold test

Parameters		1st	2nd	3rd	4th	5th	6th
Frequency (MHz)	Design	650.5	649.5	1293.5	669.2	668	649.5
	Measure	650.2	649.29	1293.1	668.98	668.68	649.15
0	Design	291.4					67
∠ c _e	Measure	292.2					69.4

The measured frequency is within design scope.

Collector brazing

Gun processing

Temperature measurement

Gun processing

Auxiliary components

Girder

Coil measurement

There is about 3% error between the measurement results and the simulation values. The excitation current of the solenoids will be adjusted to meet the design requirements.

Final assemble

Component leak test

Cavity assembly

Collector assemble

Final welding

Completed assembly

Baking out

Prototype installation

Top view

1st prototype high power test results

1000

900

800

700

600 500

0 2

6 8

4

power (kW)

♦700kW CW and 800kW pulsed power with 62% efficiency

10 12 14 16 18 20 22

Input power (W)

Parameters	Design	Test
Operating frequency (MHz)	650	650
Beam Voltage (kV)	81.5	80
Beam Perveance ($\mu A/V^{3/2}$)	0.65	0.7
Efficiency(%)	65	62
Saturation Gain(dB)	≥45	47
Output power(kW)	800	800
1 dB Bandwidth(MHz)	≥1	1.8

9:21:36 9:28:48 9:36:00 9:43:12 9:50:24 9:57:36 10:04:48 10:12:00 10:19:12 10:26:24 10:33:36 10:40:48 10:48:00 10:55:12 11:02:2

19

HE Klystron Milestone

- ♦ Jan., 2021: Klystron manufacture started
- ♦ Jul., 2021: Parts fabrication completed
- ♦ Nov., 2021: Gun processing and klystron baking out
- ◆ Dec., 2021: Klystron delivered to IHEP
- ◆ Mar., 2022: Klystron conditioning started
 - ① Cold high voltage conditioning
 - 2 Cathode activation
 - ③ High voltage conditioning
 - (4) RF Conditioning(Pulsed and CW)
- Jul., 2022: CW 630kW/Eff. 70.5%

AJDISK 1D efficiency:84.45

EMSYS2.5D efficiency: 79.3%

22

CST3D efficiency:77% Output power:808.3kW(Beam power 1.05MW)

0.889-

Type:	Energy
Naz:	232.4e+03
Local maz:	171.2e+03
Sample:	1/40
Time [ns]:	998
T end [ns]:	1000
Particles:	2987906

Transfer curve and bandwidth

Gain(3D): 48.3dB Bandwidth(2.5D): ≥0.8MHZ

Frequency error analysis

Frequency error analysis in EMSYS(2.5D) with constant input power.

For cavity frequency near the klystron center frequency such as f1,f2,f7, especially f2,the efficiency is more susceptible due to rapid impedance(or gain) change, which can get back by adjusting input power.

Frequency tolerance : $f1, f2, f7 \pm 0.2$ MHz, others ± 0.5 MHz

Fabrication processing

Electron gun

Cold test

Electron gun processing

Cathode Temp. 975 degree C @Fil. 27V/6A

Klystron final assembly

Klystron final assembly

Klystron baking out

High power test preparation

Klystron is in place in IHEP PAPS site

High power conditioning

Power vs. Efficiency

On Jul.5, 2022 CW power: 630kW Eff. : 70.5%

MBK design and fabrication status

MBK physical and mechanical design

Parameters	Value
Frequency	650 MHz
Output Power	800 kW
Efficiency	80.5%
1dB bandwith	±0.75 MHz
Beam voltage	54 kV
Beam current	2.51*8 A
Beam number	8

MBK Fabrication Status

Fabrication of two types of output window prototype is completed.
The high power conditioning was been processed with solid state amplifier at PAPS site.

High power conditioning site

Test result	Alumina	Beryllium oxide
VSWR@651MHz	1.048	1.089
VSWR@650MHz	1.034	1.084
VSWR@649MHz	1.052	1.096

MBK Fabrication Status

LCWS2023

•The experimental cavity is completely manufactured with mechanical tuning device.

•Fabrication of MBK beam tester is completed(including electron gun, collector, focusing coil) and has been delivered to IHEP last month. It will be tested in the near future.

MBK beam tester

MBK Coils and field value

C band and S band klystron

Туре	QTY	Freq.(MHz)	Structure type
S-band klystron	33	2860	 1 1-to-1, standard-bunch 3 1-to-2, standard acc. structure. 8 1-to-2, large aperture acc. structure 21 1-to-4, standard acc. structure.
C-band klystron	236	5720	1-to-2, standard acc. structure.

Huge quantity on C band klystron

Development of 80 MW C-Band Klystron

Parameters	Value
Frequency	5720 MHz
Output Power	80MW
Drive power	250 W
Gain	54 dB
Efficiency	47%
3 <i>dB</i> bandwith	±5MHz
Beam voltage	420 kV
Beam current	403 A
Focusing field	0.28 T

Characteristic Parameters

Type	of Cavity	Frequency	Qe	R/Q	Harmonics
Input	Re-entrant	5711	195.7	105	1
2nd	Re-entrant	5729	95000	123	1
3rd	Re-entrant	5738	95000	125	1
4th	Re-entrant	5876	95000	127	1
Output	Re-entrant	5725	18.22	106	1

Beam optics design simulation

Surface gradient at beam optic & ceramic

S Band klystron parameters

The RF power source system of CEPC LINAC includes 33 sets of pulsed klystron operating at a frequency of 2860MHz. The power of these klystron are excepted to be 80MW.

Parameters	Value
Operating frequency	2860MHz
Output power	80MW
RF pulsed width	4µS
Beam voltage	350kV
Beam current	414A
Beam µperveance	2.0
Efficiency	55%

- HE klystron is being developed, efficiency of 60% and 70% has been achieved, 80% efficiency is expected to be reached by the end of this year.
- Development of S and C band 80MW klystron for CEPC Linac is also in progress.

Thanks for your attention!