Safety Measures Taken in High-Gradient Accelerating-Structure Test Facility at KEK

Tetsuo ABE KEK / Accelerator Laboratory

> LCWS2023 2023-05-17

Contents

- Serious fire in 2019
- Recovery
- Safety measures against fire
- Future safety management

<u>Nextef</u>: <u>New X</u>-band <u>Test Facility</u> (11.4 GHz)

In Shield-A

for testing Normal-Conducting High-Gradient Accelerating Structures

X-band Prototype Structures Tested at Nextef1 / Shield-A

T18 →Quad → TD18→T24→TD24R05→TD24R05 →T24THU→TD24R05 →Deflector →TD24R05 → TD26CC → DCS → T24-K1 (terminated by the fire)

Fire on April 3rd, 2019

After the fire

A lot of soot spatially spreaded to the injector linac building
➔ To remove the soot around Nextef, it took over a year.

Burnt modulator

All the plastic-case capacitors meltdown

Photo before the fire

Smoke/Temperature sensors in the cubicle of the X-band modulator

Smoke sensor

located at the center of the ceiling

Temperature sensor (Threshold: 40 degC) located at the edge of the ceiling

MINIMANNE MARK

What is the cause of the fire?

- No deterioration of the modulator performance observed
- The most likely cause is puncture of the <u>plastic-case capacitors</u> (although there is no direct evidence).
 - Fire occurred at other facilities using modulators with plastic-case capacitors.
 - At Nextef, such puncture occurred twice.

250 mm

10

Negative impacts

■ All the accelerators in KEK stopped on April 3rd, 2019

- It took three weeks to recover the injector linac to re-inject e-/e+ to the main rings of SuperKEKB
- All the staff of the injector linac group had to clean it up around the building over a year.

Heavy additional paper works needed

Long time lost

- One year for the special cleaning of the experimental hall
- One year for recovery of the experimental facility (electricity, cooling, cabling, etc.)
- One year for recovery of the X-band high-power source
- One year for recovery of the control system and high-power conditioning
- Last week, we disconnected the waveguide from the dummy load, and connected it to the X-band test cavity.

Main safety measures

■Hardware

- \bullet Plastic \rightarrow metal capacitors with a lower field
- Fire extinguisher installed in the modulator

■Software

- No remote HV ON
- Video monitoring

Fire extinguisher installed

PFN cover to make the smokedetection sensitivity higher Measurement of the O2 level inside the modulator during/after the fire extinguishing gas injection (Aug. 25, 2022)

Measurement of the O2 level inside the modulator during/after the fire extinguishing gas injection (Aug. 25, 2022)

O2 monitor

✓ O2 level dropped to 14.3vol% (15vol% is the threshold for fire to persist.)
 ✓ After 1 hour, the O2 levels returned to normal (20.9vol%)

O2 monitor

Measurement of the O2 level inside the modulator during/after the fire extinguishing gas injection (Aug. 25, 2022)

22/08/25 22/08/25 22/08/25 22/08/25 22/08/25 22/08/25 22/08/25 22/08/25 22/08/25 22/08/25 22/08/25 10:31:30 10:31:45 10:32:00 10:32:15 10:32:30 10:32:45 10:33:00 10:33:15 10:33:30 10:33:45

Time during the O2 level below 15vol%

- > At the PFN top : 63 sec
- > At the PFN bottom : 53 sec

No change in the O2 level outside the modular @ at a height of 1 meter above the floor.

No change in gas pressure inside the modulator during/after the fire extinguishing gas injection Pressure monitors At the PFN top

At PFN bottom

Video monitoring at Nextef2

Not only the outer appearance, but also the inside of the modulator being visually monitored

Listening to ultrasonic sounds from corona discharge

During operation with Es=36kV

Ultrasonic leak detector made by SONOTEC Co., Ltd. (sensitive to ~40kHz)

To be incorporated in our regular inspection

What we learned and future safety

- This experience with the fire has increased our safety awareness.
- For long-term projects, related persons and technologies are to be replaced.
- Long safety period makes our safety awareness weaker.
- Human (& money?) resources decreasing
- Future high-energy accelerator facilities are to be larger and more complicated
 - → Greater chance of an accident somewhere

Ensuring a high level of safety under such circumstances is considered to be beyond human ability.

"Smart Safety" based on modern technologies

Smart Safety

E.g. Project conducted by METI of Japan:

https://www.meti.go.jp/english/policy/safety_security/industrial_safety/index.html#smart

The idea is that safety and productivity can be improved simultaneously using modern technologies such as IoT, big data, and AI.

< Inputs >

✓ Etc.

Safety Management System for Future Large Accelerator Facilities?

Acknowledgment

- We are grateful to
 - Craig Burkhart
 - Keith Jobe
 - Tony Beukers

for showing us the X-band modulators with fire extinguisher at NLCTA, and explaining safety matters at SLAC (Jan. 2020).

Thank you for your attention!

Backup slides

Capacitors replaced

(<u>PFN</u>: <u>P</u>ulse <u>F</u>orming <u>N</u>etwork)

Nextef modulator configuration at Nextef1

Modulator Drawing

(PFN: Pulse Forming Network)

