

Beam Loading Effects in the tracking code RF-Track

International Workshop on Linear Colliders 2023 – Accelerator: Beam Dynamics Session

Javier Olivares Herrador (javier.olivares.herrador@cern.ch), Andrea Latina

05.18.2023

Beam Loading Effect

- What: Reduction of available accelerating gradient
- Origin: Beam Cavity interaction
- Consequences: Transient response
 - Different energy loss from bunch to bunch
- Motivation: High I, Compact accelerating structures

[1] A. Grudiev, A.Lunin, V. Yakovlev. *Analytical solutions for transient and stead state beam loading in arbitrary travelling wave accelerating structures.* Phys. Rev. Special topics **14**, 052001 (2011)

> Theoretical analysis of beam loading effect based on CLIC's main linac [1]

Outline

- **PART I**: Introduce **power-diffusive model** for Beam Loading Effect
 - Figures of merit
- PART II: Implementation into RF-Track
- **PART III**: Results
 - Reproducibility of **BL fields**
 - Long and Short range tracking results
 - Transient BL in photoinjector guns
 - Start-to-end BL simulations

PART I: Power-Diffusive Model

I. Energy Conservation

Poynting Theorem

$$-\frac{\partial u(\vec{r},t)}{\partial t} = \vec{\nabla} \cdot \vec{S}(\vec{r},t) + \vec{E}(\vec{r},t) \cdot \vec{J}(\vec{r},t)$$

Stored EM energy density variation

Power Flow & Loss F

Field-Beam Interaction

> Energy balance schematics for an accelerating structure

- Figures of merit:
 - Group velocity
 - Quality factor
 - Shunt impedance (p.u.l)

$$v_g = \frac{P_{\text{flow}}}{w} [\text{m/s}]$$
$$Q = \omega_{\text{RF}} \frac{w}{p_{\text{diss}}}$$
$$r_e = \frac{G_{\text{eff}}^2}{p_{\text{diss}}} [\Omega/\text{m}]$$

[2] Thomas P. Wangler. *RF linear accelerators*. Wiley-VCH 2008 (Amsterdam, Holland)

I. Gradient & Synchronization

- Gradient: Averaged E-field affecting the particle
- Time of flight:

$$t_q(z, t_0, \beta(z, t, t_0, \beta_0)) = t_0 + \int_0^z \frac{\mathrm{d}\zeta}{\beta(\zeta, t, t_0, \beta_0)c}$$

• Effective E-field:

$$E_{z}|_{\text{eff}}(z,t,t_{0},\beta) = \operatorname{Re}\left[\tilde{E}_{z}(z,t)e^{j\omega t_{q}(z,t_{0},\beta(z,t,t_{0},\beta_{0}))}\right]$$

05.18.2023

> Electron synchronization with the on-axis electric field of an S-band accelerating cavity with 9 cells and peak E-field of 100 MV/m

I. Gradient & Synchronization

- Gradient: Averaged E-field affecting the particle
- Time of flight:

$$t_q(z, t_0, \beta(z, t, t_0, \beta_0)) = t_0 + \int_0^z \frac{\mathrm{d}\zeta}{\beta(\zeta, t, t_0, \beta_0)c}$$

• Effective E-field:

$$E_z|_{\text{eff}}(z,t,t_0,\beta) = \text{Re}\left[\tilde{E}_z(z,t)e^{j\omega t_q(z,t_0,\beta(z,t,t_0,\beta_0))}\right]$$

• Effective Gradient

$$G_{\text{eff}}(z_k, t, t_0, \beta) = \frac{1}{L} \int_{z_k}^{z_k+L} E_z|_{\text{eff}}(z, t, t_0, \beta) \, \mathrm{d}z$$

05.18.2023

> Effective electric field affecting the electron and its average over the cells

I. Power-Diffusion PDE

• From Poynting: Equation in terms of Gradient:

$$-\frac{\partial G_{\text{eff}}}{\partial t} = v_g \frac{\partial G_{\text{eff}}}{\partial z} + \left(-\frac{v_g Q}{r_{\text{eff}}} \frac{\partial (r_{\text{eff}}/Q)}{\partial z} + \frac{\omega}{Q} + \frac{\partial v_g}{\partial z}\right) \frac{G_{\text{eff}}}{2} + \underbrace{\frac{\omega r_{\text{eff}}\tilde{I}}{2Q}}_{\text{Beam Loading term}}$$

Some features:

- Paraxial approximation
- From z_k to $z \rightarrow$ Cubic interpolation, continuity.
- Beam Loading term: Decelerating gradient dependent on Intensity.
- Assumes causality!
- Matches [1] for the TW ultrarelativistic case

PART II: RF-Track Implementation

II. RF-Track

- About **RF-Track [3]**:
 - Beam tracking in field maps/analytic structures including **space-charge** effects, **wakefields**, ...
 - Multiple species (arbitrary q and m)
 - Parallel C++, interface with user via Octave or Python
- Beam Loading in RF-Track:
 - Self-consistent module
 - Additional decelerating kick (F_{BL})
 - Attached to Drift spaces, Analytic TW & SW structures, field maps

[3] A. Latina. *RF-Track Reference Manual*. CERN, Geneva, Switzerland, June 2020 DOI: 10.5281/zenodo.3887085

05.18.2023

II. RF-Track – BL algorithm

- **INPUT**: ω , E_z , P, Q, v_g , ϕ_{ad} , beam
- **PHASE 1**: Preparation
 - 1.1) Structure characterization —
 - From Q, v_a
- \rightarrow Cubic interpolate values from 0 to L_{total}
- From $E_z, \ \omega, \ \phi_{ad}, \ P \longrightarrow$ Integrate and get $G(z, t = 0) \ \forall z \in [0, L_{total}]$ \rightarrow Integrate and get $r_{\rm eff}$
- 1.2) PDE solving —
 - Finite difference method \rightarrow Get $G(z,t) \forall t \in [0,t^*]$
- PHASE 2: Tracking + BL ٠
 - 2.1) Perform RF-Track tracking —

- 2.2) Add F_{BL} kick
$$(z_{\text{part}}, t_{\text{part}}) \rightarrow F_{\text{BL}} = -q \left(1 - \frac{G(z_{\text{part}}, t_{\text{part}})}{G(z_{\text{part}}, 0)}\right) E_z(z_{\text{part}}, t_{\text{part}})$$

II. RF-Track – BL Example

• Example in Octave: BL + TW field map

% Import RF-Track RF_Track;

% Define bunch B0 = Bunch6d([X XP Y YP t P MASS Q N]);

% Define RF structure
TWS = RF_FieldMap_1d_CINT(Ez, hz, L, freq, -1);

% BL effect BL_steady = BeamLoading(TWS, Pmap, VG, Qfactor, phaseadvance, -1 , particles_bunch, fb); BL_trans = BeamLoading(TWS, Pmap, VG, Qfactor, phaseadvance, -1 , particles_bunch, fb, Nbunches);

% Append BL effect to TWS
TWS.add_collective_effect(BL_trans);

% Tracking Lattice
L = Lattice();
L.append(TWS);

% Perform tracking B1 = L.track(B0);

```
% Retrieve information and manipulate
M1 = B1.get_phase_space();
....
```


PART III: Results

- BL field map
- BL Tracking (Long and Short Range)
- BL in Injectors
- Start-to-end BL simulations

III. BL field map (CLIC AS)

- CLIC main Linac Accelerating Structure
 - BL decelerating field

Magnitude	Units	Value
$f_{ m RF}$	GHz	12,0
$\phi_{ m ad}$	rad	$2\pi/3$
$N_{ m cells}$		26 + 1
$v_g \ (1^{\rm st}, {\rm middle}, {\rm last \ cell})$	% c	$(1,65,\ 1,20,\ 0,83)$
Q (1 st , middle, last cell)		$(5,54,\ 5,64,\ 5,74)\cdot 10^3$
t_{fill}	ns	66,7
$P_{ m in}$	MW	$61,\!3$
$f_{\rm inj}$	GHz	2,00
$\langle I \rangle$	А	1,00
$N_{ m bunches}$		312

> CLIC main Linac Accelerating Structure Parameters [4]

> Beam Induced Decelerating force for CLIC AS.

[4] A Multi-TeV linear collider based on CLIC technology: CLIC Conceptual Design Report, edited by M. Aicheler, P. Burrows, M. Draper, T. Garvey, P. Lebrun, K. Peach, N. Phinney, H. Schmickler, D. Schulte and N. Toge, CERN-2012-007

III. BL field map (CLIC AS)

05.18.2023

- CLIC main Linac Accelerating Structure
 - Superposition to initial gradient (blue) \rightarrow Total effect upon particles to track

III. BL field map (CLIC PETS)

- CLIC Power Extraction and Transfer Structures (PETS)
 - **Passive** structures → **Deceleration**

Magnitude	Units	Value				
$\phi_{ m ad}$	rad	$\pi/2$				
$N_{ m cells}$		34,0				
v_g	% c	45,3				
Q		$7,20\cdot 10^3$				
r/Q	$\mathrm{k}\Omega/\mathrm{m}$	2,70				
t_{fill}	ns	1,67				
$f_{ m inj}$	GHz	12,0				
$\langle I angle$	А	101				
$N_{ m bunches}$		$2,93 \cdot 10^{3}$				
σ_t	mm/c	$1,\!00$				
E_{inj}	GeV	$2,\!40$				
> PETS parameters [5]						

[5] Erik Adli (2009). A Study of the Beam Physics in the CLIC Drive Beam Decelerator. PhD Thesis.

05.18.2023

III. BL tracking – Long Range

CLIC Power Extraction and Transfer Structures (**PETS**)

05.18.2023

_

Javier Olivares Herrador | LCWS'23 - Beam Loading Effects in RF-Track

17

III. BL tracking – Short Range

- CLIC Power Extraction and Transfer Structures (PETS)
 - Tracking of bunch #13 after 1492 PETS

$$\eta = \frac{E_0 - E_{\min}}{E_0} \qquad \eta_{\text{PLACET}} = 90,0\%$$
 [5]

Magnitude	Units	Value
$E_{ m in}$	GeV	2,40
E_{\min}	MeV	242
η	%	89,7
δ	%	0,63

> Extraction efficiency parameters and comparison.

05.18.2023

$$\delta = \frac{\eta_{\text{PLACET}} - \eta_{\text{RF-Track}}}{\eta_{\text{PLACET}}}$$

III. CLEAR - BeamLine

• Accelerating structures at CLEAR:

Ir	njector	Т	Travelling Wave Structure 1		Travelling Wave Structure 3
Magnitude	\mathbf{Units}	Value	Magnitude	Units	Value
$f_{ m RF}$	GHz	2.997	$f_{ m RF}$	GHz	2.997
$\phi_{ m ad}$	rad	π	$\phi_{ m ad}$	rad	$2\pi/3$
$L_{ m total}$	m	0.175	$L_{ m total}$	m	4.5
Q		15773	$1/v_q$ (1 st , middle, last cell)	1/c	$(46, \ 70, \ 133)$
$r_{ m eff}/Q$	Ω / m	3765	$Q(1^{\text{st}}, \text{middle}, \text{last cell})$,	(15300, 15210, 15130)
$t_{ m fill}$	ns	1492	$r_{\rm eff}/Q$ (1 st , middle, last cell)	$\Omega/{ m m}$	(4000, 4400, 4800)
E_z^{\max}	MV/m	80.0	$t_{ m fill}$	ns	1183
	· ·		E_z^{\max}	MV/m	15.0 - 20.0

> Standing Wave Injector Parameters.

> Travelling Wave Structures Parameters. [6] [7]

[6] CLEAR official site: https://clear.cern/content/beam-line-description [7] LAL Report on LIL (Linac Injector of LEP)

III. BL in CLEAR Injector

Train: 150 bunches; $f = f_{RF}/2$; $Q_{bunch} = 250 \text{ pC} - 1500 \text{ pC}$

III. BL in CLEAR Injector

Another consequence: Arrival time to TWS1

- If all bunches traveled with same β , then the arrival time to TWS1 would be equally spaced.

$$t_k = \underbrace{\frac{4\pi k}{\omega}}_{} + \underbrace{\int_0^L \frac{\mathrm{d}z}{\beta(z)c}}_{}; \ k = 0, .., N - 1 \implies \Delta t_k = \frac{4\pi}{\omega}$$

Injection time Flight time along gun

- However, particles have different β because of Gradient reduction \implies Different $\Delta t_k!$

III. BL in CLEAR Injector

Another consequence: Arrival time to TWS1

- If all bunches traveled with same β , then the arrival time to TWS1 would be equally spaced.

$$t_k = \underbrace{\frac{4\pi k}{\omega}}_{} + \underbrace{\int_0^L \frac{\mathrm{d}z}{\beta(z)c}}_{}; \ k = 0, .., N - 1 \implies \Delta t_k = \frac{4\pi}{\omega}$$

Injection time Flight time along gun

- However, particles have different β because of **Gradient reduction** \implies **Different** Δt_k !

> Video showing the relevancy of synchronization for 2 bunches (macro-particles) injected on at off phase.

III. Start-to-end BL in CLEAR

• Consider the whole structure + Phase scan in $\phi_{TWS2} = \phi_{TWS3}$

III. Start-to-end BL (Phase Compensation)

Beam Loading at GUN helps compensating overall Beam Loading

05.18.2023

_

Conclusions

- Gradient reduction due to beam-cavity interaction can be understood with the Power-Diffusive model
- The implementation of this model in RF-Track provides a user-friendly, flexible and powerful tool which allows:
 - To study gradient reduction in future linear colliders (in our case, CLIC)
 - To perform long and short range tracking considering BL effect
 - Study BL effects in **guns** and its **implications (unique?)**
- **Great agreement** has been found with previous BL studies
- Transient BL scenarios in gun injectors still require **experimental verification**

Acknowledgements

- **Supervision**, guidance and trust:
 - Andrea Latina (CERN, BE-ABP-LAF)

also, RF-Track creator and main developer.

- Nuria Fúster Martínez, Benito Gimeno, Daniel Esperante (UV – Spain, IFIC - CSIC)

- Useful material & discussions:
 - Alexej Grudiev (CERN, SY-RF-MKS)
 - Avni Aksoy (CERN, BE-ABP-LAF)
 - The CLIC Beam Dynamics team

Thanks for your attention

