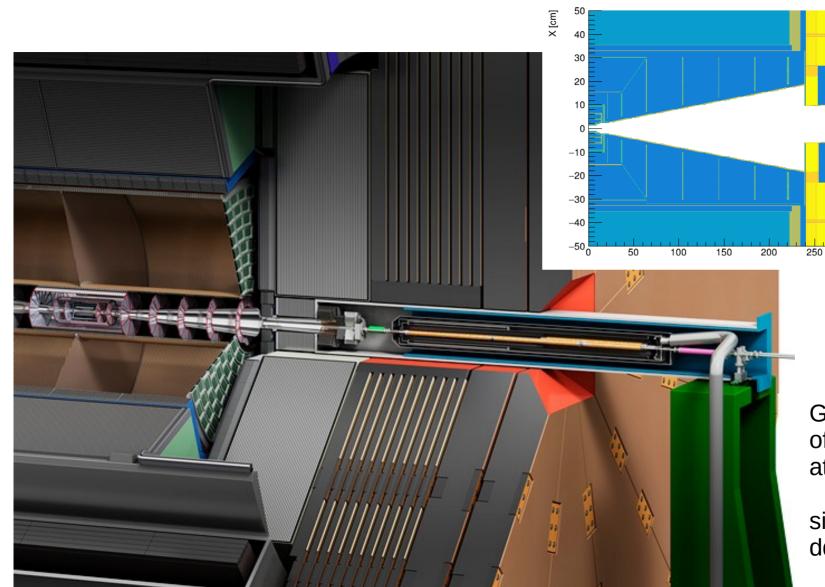


1

beam background studies with ILD

Daniel Jeans KEK/IPNS

LCWS2023


reminder of "recent" past studies of ILD @ ILC

taken from note ILD-TECH-PUB-2019-001

https://confluence.desy.de/download/attachments/42357928/machine_backgrounds_final.pdf?version=1&modificationDate=1585012405260&api=v2

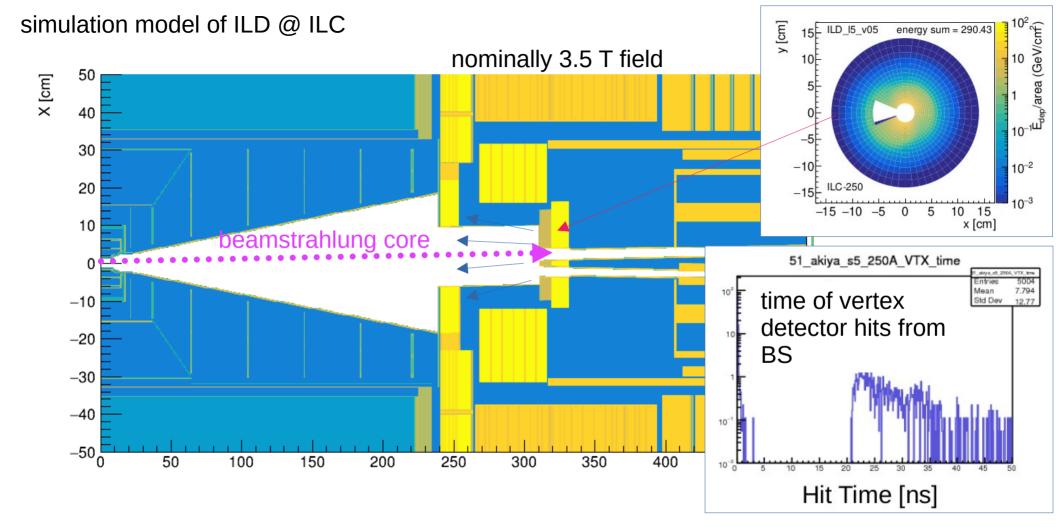
only beamstrahlung today

some recent work in progress on ILD @ FCCee

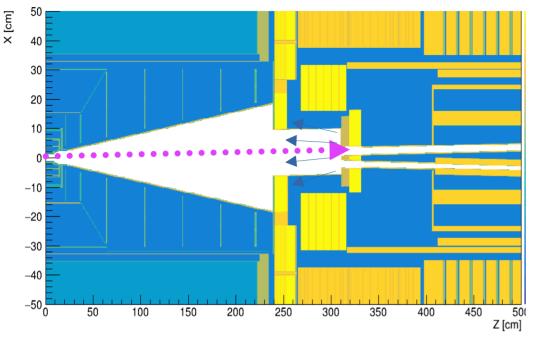
DD4hep detector model of ILD

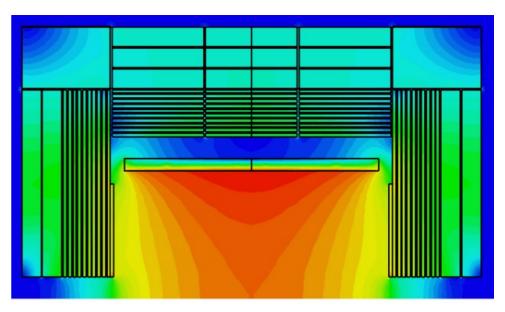
350

300


400

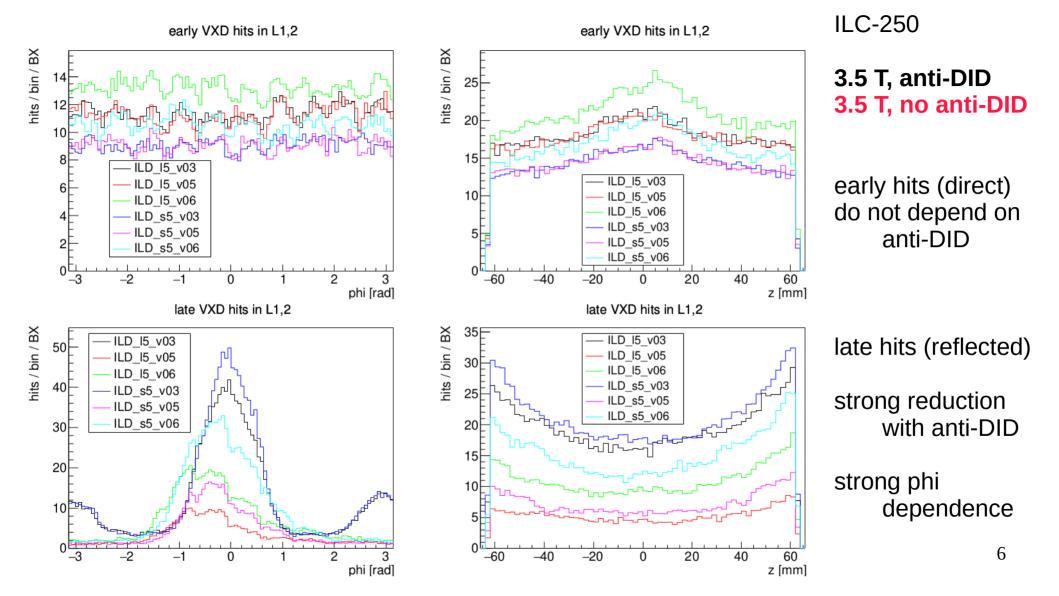
450


50(Z [cm]


GuineaPig simulation of beamstrahlung at ILC-250

simulated in ILD ddsim/Geant4 ³

Beamstrahlung hitting BeamCal@z=3m is a source of particles coming back into the detector anti-DID field tries to minimise this by steering beamstrahlung core into outgoing beampipe



most beamstrahlung e+e- are very low pT $_{\rightarrow}$ tend to "follow" the magnetic field lines

B-field rather non-uniform in forward region

accurate description of reflected beamstrahlung probably requires a somewhat realistic map of the B-field

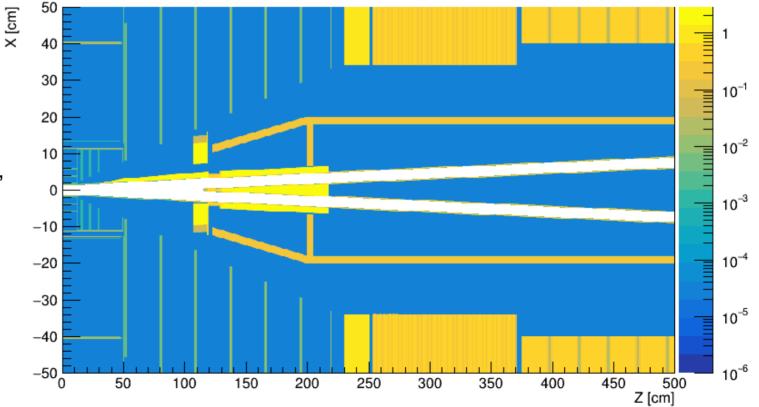
n.b. proper tracking of low-p_T particles in non-uniform field with ddsim was non-trivial: required special settings

				VXD hits per BX					
	ECOM	aDID	nom. field	Layers 1, 2		Layer 3, 4		Layer 5, 6	
ILD model	[GeV]		[T]	Early	Late	Early	Late	Early	Late
ILD_15_v03	250	no	3.5	1139	1234	213	48	64	19
ILD_15_v05	250	yes	3.5	1125	334	222	14	69	6
ILD_15_v06	500	yes	3.5	1321	691	258	29	70	13
ILD_s5_v03	250	no	4.0	909	1343	176	60	54	21
ILD_s5_v05	250	yes	4.0	910	453	177	22	52	7
ILD_s5_v06	500	yes	4.0	1057	963	206	38	63	18

with no anti-DID, similar number of direct & reflected hits in VXD inner layers

anti-DID reduces reflected hits by factor ~4

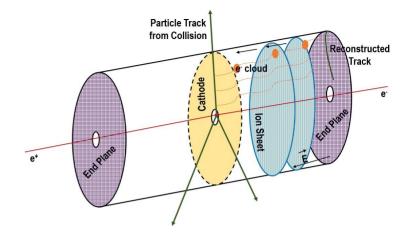
ILD at a circular collider especially the TPC


now let's look at ILD at a circular collider

MDI region is very different

FCCee/CLD

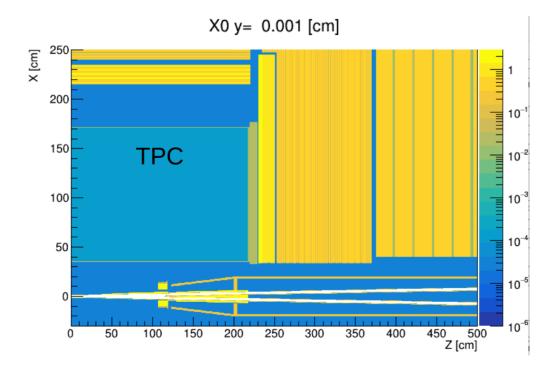
lumical & masks inside "tracking region"


field limited to 2T

bunch structure is very different: continuous bunch crossings at ~33 MHz @ Z-pole

we looked at what this implies for the TPC

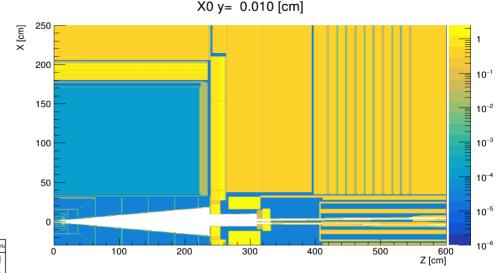
the ions produced in the TPC gas amplification drift through the gas volume for \sim 0.44 s


at ILC, there are up to 3 localised disks of ions drifting though the TPC, each with ions from ~1k bunch crossings of 1 train resulting distortions on electron trajectories don't destroy the momentum resolution

at FCCee,

quasi-continuous ion cloud from ~14M bunch crossings

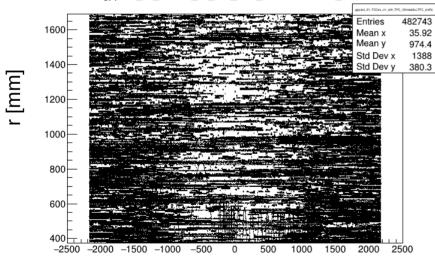
100 BX of GuineaPig simulation for FCCee-91 courtesy of A. Ciarma (CERN) full geant4 simulation in "ILD" models

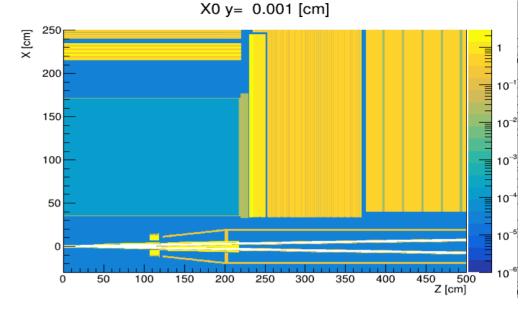

To study this made a FCCee/CLD model with TPC remove silicon tracking from CLD squeeze in ILD's TPC reduce B-field to 2 T [n.b. uniform field for now...]

usual ILD model, except B = 2T (n.b. uniform field)

distribution of hits in the TPC, overlaying 100 BX @ 91 GeV

gppairs 91 ILD 15 vTPCFCCALLTPC ionRz Entries 71651 1600 -29.06 Mean x vlean v 983.6 Std Dev x 1026 r [mm] 140 383.5 Std Dev y 1200 1000 800 600 2500 -2500-2000-1500-10001500 z[mm]


this corresponds to ~71k primary ions / BX


each primary ionisation also induces 1~5 ? ions flowing back from the gas amplifier, depending on gating efficiency "Ion Back Flow" IBF

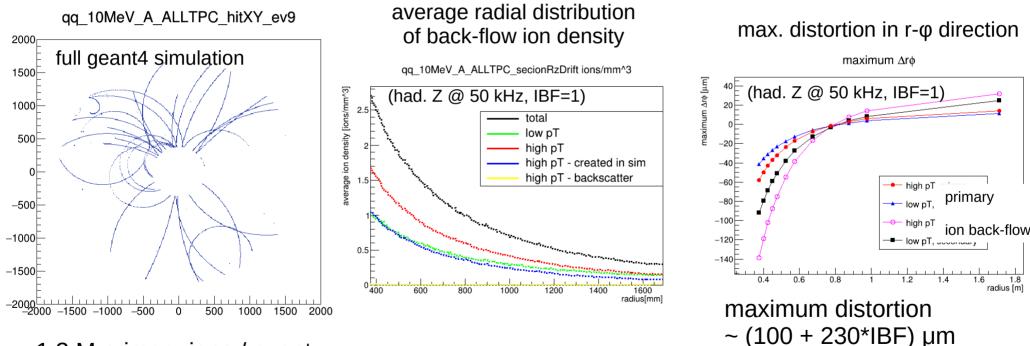
now CLD with TPC (n.b. uniform field)

distribution of hits in the TPC, overlaying same 100 BX @ 91 GeV

gppairs_91_FCCee_o1_v04_TPC_30mradALLTPC_ionRz

this corresponds to ~ 430k primary ions / BX

increase by factor ~6


how about physics events ?

 $z \rightarrow qq$ has high cross-section and multiplicity

~ 22k hadronic Z decays in the 0.44 s "TPC clearing time"

estimate ion distribution \rightarrow extract expected distortions of electron trajectories

(with K. Fujii)

~1.3 M primary ions / event

				work in progress!			
	primary ions / "event"	ave. rate	primary ions / 0.44 s "TPC frame"	<u> </u>			
Z → qq @ 91 GeV ILD_I5_v02 @ 2T	1.3M	54 kHz	30 x10 ⁹ -	max. distortions: 300 µm ~ mm for IBF = 1 ~ 5			
pairs@91GeV ILD_I5_v02 @ 2T	71 k	33 MHz	1000 ×10 ⁹				
pairs@91GeV FCCee w/ TPC	0.43 M	33 MHz	6200 x10 ⁹				

discussing with TPC colleagues...

summary

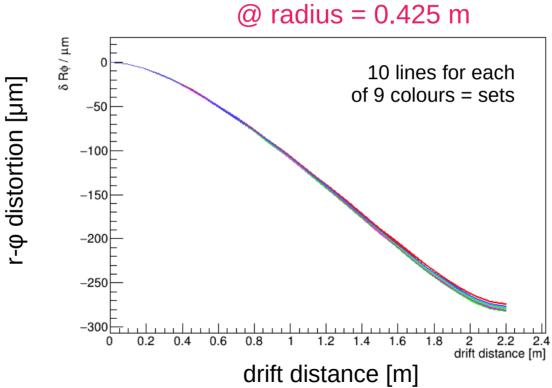
- beamstrahlung-induced backgrounds strongly influenced by Machine Detector Interface
- at ILC, MDI is ~2.5m from the IP
- at FCCee, MDI extends to ~1m from IP
 - \rightarrow 6 times more beamstrahlung background hits in TPC
- Tera-Z envisages very high bunch-crossing rate
 - \rightarrow can TPC cope with the resulting ion cloud from beamstrahlung ?
 - \rightarrow are large but rather stable distortions OK ?
 - \rightarrow mitigation? extra shielding ?
- various cross-checks needed
 - \rightarrow simulation or presses in TPC
 - \rightarrow effect of realistic B-field

https://indico.cern.ch/event/1203316/timetable/#5-fcc-accelerator-status-and-r

C IS Workshop, December 5-9, 2022 FCC-ee Parameters							
Beam energy	[GeV]	45.6	80	120	182.5		
Layout		PA31-1.0					
# of IPs		4					
Circumference	[km]	90.836848					
Bending radius of arc dipole	[km]	9.937					
Energy loss / turn	[GeV]	0.0391	0.370	1.869	10.0		
SR power / beam	[MW]		50				
Beam current	[mA]	1280	135	26.7	5.00		
Bunches / beam		10000	880	248	40		
Bunch population	[10 ¹¹]	2.43	2.91	2.04	2.37		
Horizontal emittance ε_x	[nm]	0.71	2.16	0.64	1.49		
Vertical emittance ε_y	[pm]	1.42	4.32	1.29	2.98		
Arc cell		Long 90/90		90/90			
Momentum compaction α_p	$[10^{-6}]$	28.5		7.33			
Arc sextupole families		75		146			
$\beta_{x/y}^*$	[mm]	100 / 0.8	200 / 1.0	300 / 1.0	1000 / 1.6		
Transverse tunes/IP $Q_{x/y}$		53.563 /	53.600	100.565	/ 98.595		
Energy spread (SR/BS) σ_{δ}	[%]	0.038 / 0.132	0.069 / 0.154	0.103 / 0.185	0.157 / 0.221		
Bunch length (SR/BS) σ_z	[mm]	4.38 / 15.4	3.55 / 8.01	3.34 / 6.00	194/274		
RF voltage 400/800 MHz	[GV]	0.120 / 0	1.0 / 0	2.08 / 0	2.1 / 9.2		
Harmonic number for 400 MHz							
RF freuquency (400 MHz)	MHz	400.793257					
Synchrotron tune Q_s		0.0370	0.0801	0.0328	0.0826		
Long. damping time	[turns]	1168	217	64.5	18.5		
RF acceptance	[%]	1.6	3.4	1.9	3.0		
Energy acceptance (DA)	[%]	± 1.3	± 1.3	± 1.7	-2.8 + 2.5		
Beam-beam ξ_x/ξ_y^a		0.0023 / 0.135	0.011 / 0.125	0.014 / 0.131	0.093 / 0.140		
Luminosity / IP	$[10^{34}/cm^2s]$	182	19.4	7.26	1.25		
Lifetime $(q + BS + lattice)$	[sec]	840	-	< 1065	< 4062		
Lifetime (lum)	[sec]	1129	1070	596	741		
^a incl. hourglass. K. Oide, Nov. 2022							

FCC

○ FCC


T. Lefevre - 1st FCC Beam instrumentation workshop – CERN – Switzerland. - 21st-22nd November 2022

Beam Size Measurement

Parameter [4 IPs, 91.2 km]	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
horizontal beta* [m]	0.1	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.64	1.49
vertical geom. emittance [pm]	1.42	4.34	1.29	2.98
horizontal rms IP spot size [µm]	8	21	14	39
vertical rms IP spot size [nm]	34	66	36	69

value
91.18
182.5
1280
10000
25
2.43
0.71
1.42
8
34
1.95 / 2.75

stability of distortions due to hadronic events @ Z-pole

