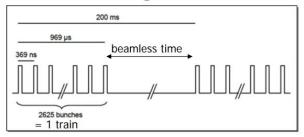

Pair Production Backgrounds at C3

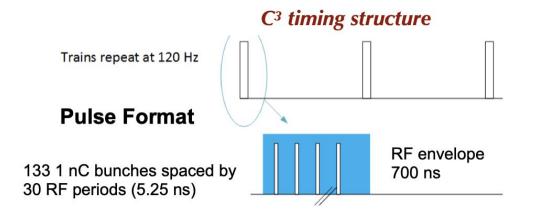
Elias Mettner, Abdollah Mohammadi, Bryan Nee¹ Lindsey Gray² Dimitris Ntounis, Caterina Vernieri³

¹University of Wisconsin-Madison ²Fermi National Accelerator Laboratory ³Stanford University and SLAC National Accelerator Laboratory

C³ - 8 km Footprint for 250/550 GeV


The C3 Accelerator Parameters

Collider	NLC	CLIC	ILC	C^3	C^3
CM Energy [GeV]	500	380	250(500)	250	550
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
Gradient [MeV/m]	37	72	31.5	70	120
Effective Gradient [MeV/m]	29	57	21	63	108
Length [km]	23.8	11.4	20.5(31)	8	8
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014


- C3 Accelerator design utilizes cryogenic copper to achieve improved acceleration gradients
- Similar luminosity to ILC, bunch spacing is significantly smaller
- Must consider what that means for the C3 backgrounds, considering ILC

Going from ILC to C³ beam parameters

ILC timing structure

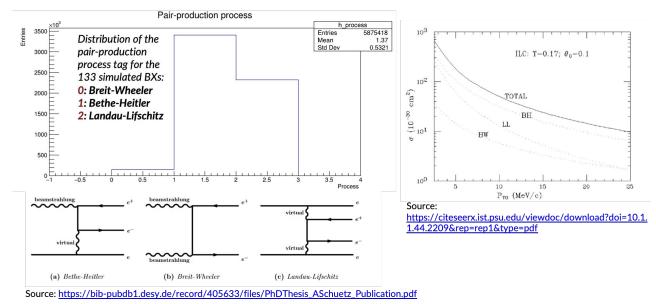
ms long bunch trains at 5 Hz
2820 bunches per train
308 ns spacing

- C3 has a radically different bunch structure from ILC
- Time structure and electronics needs are different at low level
 - But modern clocking and timing performance means that C3 ~ ILC/10 where beam-based background's impact on performance considerations is concerned

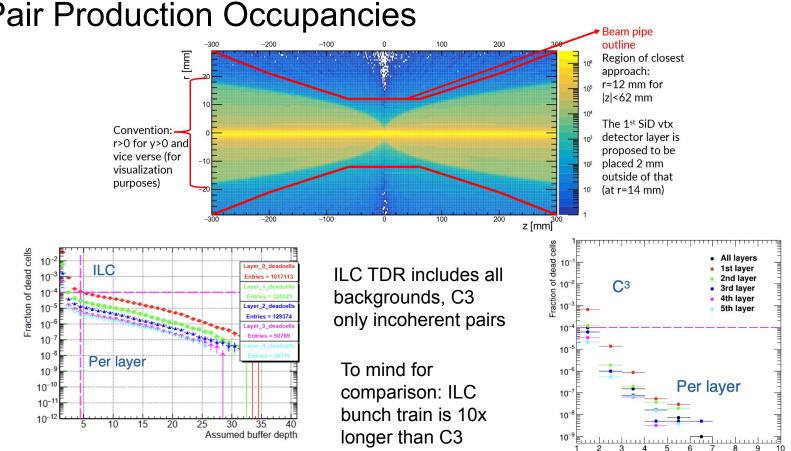
Going from ILC to C³ beam parameters

Parameter	Units	Value	
β_x^*	mm	12	
β_y^*	mm	0.12	
$\epsilon_{N,x}^*$	nm	900	
$\frac{\epsilon^*_{N,x}}{\epsilon^*_{N,y}}$	nm	20	
σ_x^*	μm	210.12	
σ_y^*	μm	3.13	
σ_z^*	μm	100	
nb		133	-
frep	Hz	120	/
N		$6.25 \cdot 10^{9}$	
θ_c	rad	0.014	

• The emittances on the table are normalized. The transverse beam size is calculated as:


$$\sigma_{x,y}^* = \sqrt{\epsilon_{x,y}^* \beta_{x,y}^*} = \sqrt{\frac{\epsilon_{L,x,y}^* \beta_{x,y}^*}{\gamma}} , \ \gamma = \frac{E}{m_e c^2} = \frac{\sqrt{s}}{2m_e c^2}$$

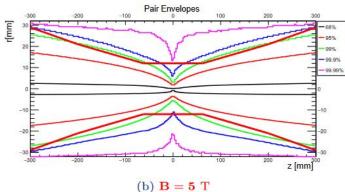
Needed a few relevant params:

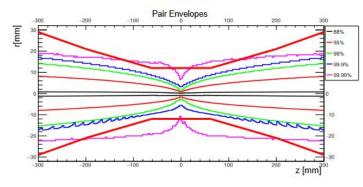

- Number of bunches
- Repetition frequency
- Emittances

	Initial Tests	Emilio's Values
Energy spread	0.1%	0.3%
Energy spread distribution	Gaussian	Flat
Offset in x direction (nm)	0	5
Offset in y direction (nm)	0	0.2
Waist shift in x direction (µm)	0	0
Waist shift in y direction (μm)	0	0
Crossing angles (not compensated by crab scheme)	0	0

Beam Parameters and the GuineaPig Simulation

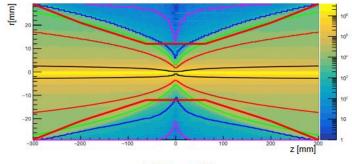
- This background comes from generation of virtual photons as bunches pass through each other or from hard bremsstrahlung, "incoherent pairs"
- To simulate the pair background, we used the GUINEA-PIG (GP) program:
 - For this study, simulate primary production modes production of e+/e- pairs from beam and beamstrahlung initiated backgrounds
 - Also handles for hadron photoproduction, but known inaccuracies have led us to utilize alternate methods

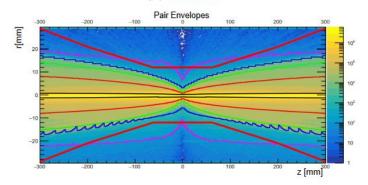



Pair Production Occupancies

Assumed buffer depth

Pair Production - Dependence on solenoid B-field


(a) B = 2 T



(a) B = 2 T

(b) B = 5 T

Hadron Photoproduction Backgrounds

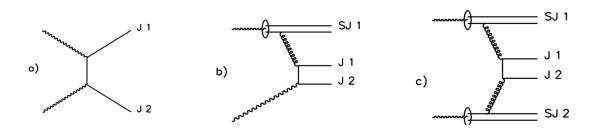
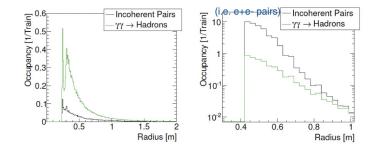
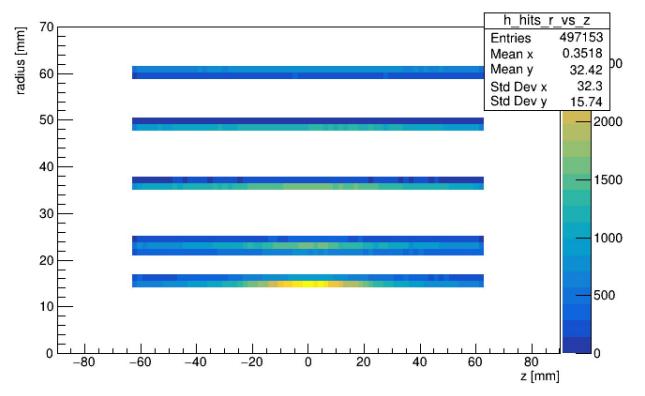


FIG. 2: Comparison of cross sections for $\gamma\gamma \rightarrow$ hadron processes as a function of centre of mass energy obtained from Amaldi parameterization [3], Standard paramerization [8] in PDG, Pythia and data from LEP [1], PETRA [6] and VEPP [5]

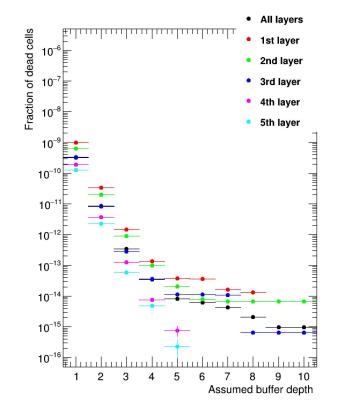
- Hadron photoproduction (HP) is smaller than the pair production background
 - HP cross section ~0.44 microbarns, incoherent pair production larger by 10^5
 - However, HP is more central
- Background will go to the central part of detector
 - Larger diphoton center-of-mass compared to incoherent pairs
 - Comparatively larger probability of physics impact, especially for jet clustering

Hadron Photoproduction: Spectra and Generators


FIG. 1: Energy spectrum of $\gamma\gamma \rightarrow \text{low } p_T$ hadron events as a function of centre-of-mass energy. The figure shows the energy cutoff of 10 GeV below which the events are generated by the Barklow generator. Above 10 GeV the events are generated by **Pythia**.

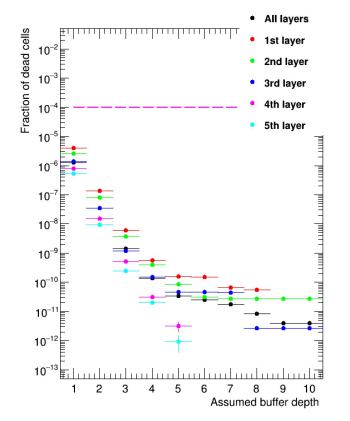
 $\label{eq:Figure 14.} Figure 14. The radial distribution of the train occupancy per pad in ECal (left) and per cell in HCal (right) endcap [10].$


- Using Pythia to simulate the hadron photoproduction
 - Note: Pythia only simulates part of the spectrum past 10 GeV
 - Direct-direct process only appears from our first results due to this
- Next steps: use WHIZARD plugin from Tim Barklow to simulate hadron photo production 0.211-10 GeV range
 - Should also investigate incoherent muon pair production

Occupancy Results with Pythia 8

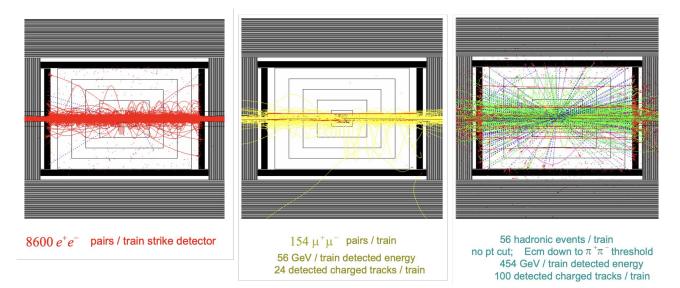
Occupancy Results with Pythia 8

Occupancy is scaled by production cross section for pythia 8 events



NB: This is **only** the occupancy from hadron photoproduction. Not overlaid with incoherent pairs!!!

Occupancy Results with Pythia 8


Occupancy rescaled to total hadron photoproduction cross section (10^3 larger)

When summed with incoherent pairs plot, starts to produce long occupancy tail seen in ILC plot.

NB: This is **only** the occupancy from hadron photoproduction. Not overlaid with incoherent pairs!!!

Eventual Breadth of Our Simulations

- C3 background rates are expected to be similar constituency to ILC
 - Total amount per bunch train divided by 10, assuming electronics to handle 5ns bunch spacing
 - Proper simulation of 5ns bunch spacing requires simulation tech. from LHC (shared with MuC community)
- Nearly all ILC background studies can be used and reexamined in the context of C3
 - Gives us a good rule-of-thumb to proceed forward with, and a wealth of knowledge to draw from

Conclusions

- C3 beam-induced-background studies making steady progress
 - Occasionally difficult to collect all necessary information together
 - New generators and active development helping to clarify further directions (thanks Tim!)
- Two background processes remaining
 - Low energy hadron photoproduction from Barklow-gen
 - Muon incoherent pairs (also Barklow-gen?)
 - Will need updated CIRCE cards for C3 to get completely accurate results
 - Happy to help update any part of generator pipeline to Whizard 2.x
- Will move over summer to key4hep / edm4hep, rather than raw GEANT
 - C3 background overlay will require significant technical work compared to ILC (bunch spacing)