





#### **Options for DIMUS: Di-Muon-Spectroscopy Collider**

Patrick Fox, Sergo Jindariani, <u>Vladimir Shiltsev (FNAL)</u> and Spencer Gessner (SLAC) LCWS 2023 Workshop, SLAC May 18, 2023

#### https://arxiv.org/abs/2203.07144

# 1. The need: Di-Muonium (True Muonium)



# **Dimuonium -** a bound state of $\mu + \mu$ - pair

- Two-lepton system described by QED
- There are 6 leptonic atoms:
  - positronium (e+e-),
  - muonium ( $\mu$  +e-), dimuonium ( $\mu$ + $\mu$ -),
  - tauonium( $\tau$ +*e*-), tau-muonium ( $\tau$ + $\mu$ -), ditauonium ( $\tau$ + $\tau$ -).



• Dimuonium is more compact system than the positronium and muonium

 $R_{\mu\,\mu} \approx (1/100) R_{\mu\,e} \approx (1/200) R_{ee}.$ 





#### **Fundamental Physics**



- Observation of dimuonium would be a significant discovery.
- **QED tests** (dimuonium  $\neq$  positronium x  $m_e/m_u$ )
- Muon sector anomalies:
  - About 4.2 sigma difference between the  $(g-2)_{\mu}$  SM prediction and measurement (soon)
  - Proton/deuteron radius puzzle
  - Hints of lepton-universality violation in rare *B* decays:

 $B \rightarrow K + e + e - and B \rightarrow K + \mu + \mu - (@SuperKEKB)$ 

 Very complex experimental task → challenge for machine design → challenge for experimentalists → development of new methods

### **DIMUS Collider**

- Threshold production: E\_cm=211 MeV
- $e+e- \rightarrow (\mu+\mu-)[n3S1] \rightarrow \gamma * \rightarrow e+e-$

is allowed and has a rate and precision spectroscopy sensitive to vacuum polarization corrections

- $(\mu+\mu-)$  has a lifetime of 1.81 ps in the 3S1 state (decaying to e+e-)
- Other Physics: High statistics measurements:
  - e+e-→ mu+mu-
  - e+e-→ pi+pi-
- Other hadronic x-sections:
  - e+e-→ 3pi
  - e+e-→ pi0+gamma
  - e+e-→ eta+gamma
  - e+e-→ 4pi



G. 1: True muonium level diagram (spacings not to scale).

 $n=\infty~(E=0)$ 

# **Signal and Background**

- e+e-  $\rightarrow$  TM  $\rightarrow$  e+e-
- The primary background is Bhabha events
- Even for delta(Ee) ~10 keV, the signal cross-section is about 5 nb... Bhabha ~ 22,000 nb  $\rightarrow$  S/B ~1/4,000
- Suppress backgrounds by producing muonium moving
- For Dimuonium: beta\* gamma\* ctau = 2 cm
- Interaction region spread 300 400 microns
  - Detector resolution can be negligible (<100 microns)</p>
  - Total vertex resolution <400 microns</p>
- Requiring z > 2 cm would suppress Bhabba events
- Prompt background free after the cut
- Extract 1S/2S/3S fractions from the vertex position



A collider with a large crossing angle (eg 75 deg) was proposed by S.J.Brodsky and R.F.Lebed in Phys. Rev. Lett. 102, 213401 (2009)

05/27/2021



# 2. Possibility : Fermilab FAST/IOTA



#### **IOTA/FAST Facility for Accelerator and Beam Physics R&D**

#### Beams: 5 MeV e-, 50 MeV e-, 100-300 MeV e-, ring and 2.5 MeV p+



Excellent source of high energy electrons:

eg 3000 bunches x 5 Hz x 2e10 = 3e14 *e*-/s

at 1% conversion  $\rightarrow$ 3e12 *e*+/s

#### DIMUS will probably need much less

eg 200 bunches x 1 Hz x 2e10 = 4e12 *e-*/s at 1% conversion  $\rightarrow$ 4e10 *e+*/s

Efficient linac – now upto 300 MeV

DIMUS will need extra ~108 MeV  $\rightarrow$  total of 408 MeV Infrastructure and expertise

#### Shiltsey - DIMUS Collider 05/27/2021











# **Positron Production Options**



- Need (at least) two linacs:
  - Accelerate electrons (50... 300 MeV)
  - Convert them on tungsten target
  - Accelerate positrons which then go to a damping ring



## **Very Fast Kickers**





#### Novosibirsk "Mu-Mu-Tron" Design









A.Bogomyagkov, et al, arXiv:1708.05819; *EPJ Web. Conf* 181, 01032 (2018)



Shiltsey - DIMUS Collider

05/27/2021

#### **DIMUS at FAST/IOTA Will Need (New Systems):**



- Second 1.3 GHz SRF CM, so the final energy 408 MeV
  - ~200 e- bunches 2e10 each, 333ns apart for e+ production
  - 40 e- bunches 2e10 each for collider
- Positrons:
  - Conversion/collection/acceleration (200 e+ bunches 2e8 each, 333ns apart)
  - C=120 m 204 MeV storage ring accumulator (200-204 MeV)
  - Inject 200 e+ bunches into accumulator (damping) ring 2 ns apart (400 ns ring)
  - After sub-second damping time combine 200 e+ bunches into one with 4e10 e+
- Fast extraction/injection kickers 2-3 ns (0-to-0), few kV
- Collider e+e- rings (2 x 408 MeV, 23 m circumference each)
  - Bunches accelerated to 408 MeV injected into 23 m long (~80 ns) DIMUS ring, to be one of ~40 e+/e- bunches (others intact)
  - O(1e32) luminosity and ~0.5M dimuons per year

# Detector



- Vertex: Pixelated silicon vertex detector:
  <50 microns</li>
- Crystal calorimeter with excellent timing and energy resolution
- Directionality: Additional 2-3 tracking layers between the vertex detector and the calorimeter. Gas based (GEM) or silicon strips
- No magnetic field necessary
- ✦ Can probably achieve 50+% acceptance per track, 25% total.
- 500k-1M signal events per year
- Integrated radiation dose small (?)

05/27/2021

Devil is in the details



# 3. Compact : ABC-DIMUS



#### Asymmetric e+e- DIMUS: Concept





#### **Boost and Luminosity**



![](_page_15_Figure_2.jpeg)

![](_page_15_Picture_3.jpeg)

#### **Demonstrated State-of-the-art LWFA**

![](_page_16_Picture_1.jpeg)

![](_page_16_Figure_2.jpeg)

368 MeV and 25 pC at 1 Hz for 24 hours. Better single-shot results exist and work is ongoing to make these systems more robusts Fermilab

#### **Low Energy Positron Source**

![](_page_17_Picture_1.jpeg)

#### **GBAR** Positron Source

![](_page_17_Picture_3.jpeg)

#### Buffer Gas Trap Schematic

![](_page_17_Figure_5.jpeg)

Low energy positron sources are commonly employed in antimatter and material science studies.

🗳 Fermilab

#### **Combine Positron Source with Accelerator**

- (Under study) possibility of accelerating positron beams from the trap:
- https://arxiv.org/abs/2301.08368
- Advantages includes:
- Small thermal emittance 🗸
- Compact size/low cost
- Polarized positrons from <sup>22</sup>Na

Disadvantages:

- Very-low positron rate  $\mathbf{X}$
- Low-energy/long bunch X

#### The beam is magnetized.

![](_page_18_Figure_11.jpeg)

A Compact Source of Positron Beams with Small Thermal Emittance, R. Hessami and S. Gessner, arXiv 2301.08368 (submitted to PRAB)

This novel, low-cost positron source can enable accelerator physics studies and ultrafast material science research.

![](_page_18_Picture_14.jpeg)

# Thanks for your attention!

![](_page_19_Picture_1.jpeg)

![](_page_19_Picture_2.jpeg)

![](_page_19_Picture_3.jpeg)

08/05/2023

## (Some) References:

- 1. DIMUS @ FNAL P.Fox, S.Jindariani, V.Shiltsev, arxiv: 2203.07144 (subm. JINST)
- 2. 1<sup>st</sup> concept S.J.Brodsky and R.F.Lebed, *Phys. Rev. Lett.* 102, 213401 (2009)
- 3. Bjorken FISR idea J. D. Bjorken, Lect. Notes Phys. 56, 93 (1976).
- 4. μμTron A.Bogomyagkov, et al, arXiv:1708.05819; *EPJ Web.Conf* 181, 01032 (2018)
- 5. 6 ns kicker B. Grishanov, et al *NIM-A* 396(1-2) 28-34 (1997)
- 6. 4 ns kicker T. Naito, et al, PRAB 14(5), 051002 (2011)
- 7. Positron sources R.Chehab, 1992 CAS CERN School, 2, 643-678 (1994)

![](_page_20_Picture_8.jpeg)

05/27/2021

#### **Table II**

| Beam energy, MeV                                | 408                                     |
|-------------------------------------------------|-----------------------------------------|
| umber of particles/bunch current, mA            | $3.5 \times 10^{10}/73$                 |
| ergy loss per turn, keV                         | 2.3                                     |
| chrotron frequency                              | $1.71 \times 10^{-2}$                   |
| ping time, hor/ver/longl, ms                    | 17.3/27.3/22.1                          |
| emittance (without/with IBS), nm                | 26/90                                   |
| rgy spread (without/with IBS), ×10 <sup>4</sup> | 4/8.4                                   |
| gitudinal size (without/with IBS), mm           | 5.4/11.6                                |
| riant mass resolution, keV                      | 390                                     |
| ver IP beta function, mm                        | 200/2                                   |
| /ver beam–beam parameter ( $\xi_x/\xi_y$ )      | $2 \times 10^{-6} / 1.2 \times 10^{-3}$ |
| gitudinal beam–beam parameter $\xi_z$           | $-2 \times 10^{-3}$                     |
| ninosity (20 bunches), $cm^{-2} s^{-1}$         | $8 \times 10^{31}$                      |
|                                                 |                                         |

Shiltsev - DIMUS Collider