High energy plasma injector for future electron-positron collider

CEPC Plasma Injector Study Group

Shiyu Zhou Department of Engineering Physics, Tsinghua University

International Workshop on Future Linear Colliders, 2023

CEPC Plasma Injector Study Group

Institute of High Energy Physics Chinese Academy of Sciences

- Introduction to plasma injector
- Current status of CEPC plasma injector
- Test facility plan

Frontiers of high energy physics

- Precision measurement of the Higgs Boson and other particles with high energy electron-positron collider is of the most important issues for particle physics.
- The candidates for the future electron-positron collider
 - ➤ The International Linear Collider (ILC)
 - Circular Electron Positron Collider (CEPC) (with plasma injector)
 - Future Circular Collider (FCC-ee)

Plasma Based Accelerator

The drive beam can be a laser (LWFA) or a charged beam (PWFA). Considering the beam power required by a collider, PWFA has an advantage.

T.Tajima and J.M. Dawson PRL (1979) LWFA P.Chen, J.M. Dawson et.al. PRL (1983) PWFA

4

International Workshop on Future Linear Colliders, 2023

CEPC plasma injector (CPI)

CEPC baseline

CEPC + CPI

10GeV Linac + 30/45GeV Plasma Injector+ 120GeV

Booster + Collider Rings

The development of CPI

新華大学 Tsinghua University

- > 2017 CPI study group established
- > 2018 "CEPC Conceptual Design Report" released, with CPI as a part of the appendix v1.0

Booster Requirements for CPI @ 30GeV

Parameter	Symbol	Unit	Requirement	ILC
e- /e+ beam energy	E_{e}/E_{e^+}	GeV	30	125
frequency	f_{rep}	Hz	100	10
e ⁻ /e ⁺ bunch population	N _e /N _{e+}	nC	> 1.0	3.2
Energy spread (e ⁻ /e ⁺)	σ_{e}	%	< 0.2	0.19 (e+) / 0.15 (e-)
Emittance (e ⁻ /e ⁺)	$\gamma \varepsilon_r$	mm∙ mrad	< 800	10 (H) / 0.035 (V)
Bunch length (e ⁻ /e ⁺)	σ_l	mm	0.2~ 2	
Switch time e- /e+		S	< 2	
Energy stability		%	< 0.2	
Longitudinal stability		mm	< 2	
Orbit stability		mm	<3 (H) / 3 (V)	
Failure rate		%	<1	

By Dou Wang

Plasma injector is an important step to the plasma based linear collider!

Via single stage high transformer ratio (HTR) PWFA

CPI electron acceleration

Plasma parameters			
Plasma density $n_p(\times 10^{16} cm^{-3})$.50334	
Ramp Length (m)	0.1		
Beam Parameters	Driver	Trailer	
Driver energy $E(GeV)$	10	10	
Normalized emittance $\epsilon_n(mm \ mrad)$	20	10	
Length(um)	340	89.2	
Spot size(um)	3.89	2.75	
Charge(nC)	3.87	1.19	
Accelerating distance (m)	7.70		
Trailer energy <i>E</i> (GeV)	30.41		
Energy spread (%)	0.21		
Normalized emittance $\epsilon_x(mmm)$	74.6		
Normalized emittance $\epsilon_y(mmn)$	123.0		
Charge(nC)	1.19		

A loans

CPI electron acceleration – tolerance analysis

Offset (x direction)	4 µm	12 µm	20 µm	30 µm
Bunch charge [nC]	1.197	1.197	1.174	1.079
Energy [GeV]	30.01	30.04	30.16	30.37
RMS energy spread	0.43	0.41	0.22	0.72

Tilt angle	10 µrad	100 µrad	1 mrad
Bunch charge [nC]	1.197	1.197	0.903
Energy [GeV]	30.01	30.01	30.24
RMS energy spread	0.41	0.41	0.65

CPI positron acceleration

	density	1e15cm ⁻³
Plasma	Inner radius	$1.0 k_p^{-1} (168 \mu m)$
	Outer radius	$4.5 k_p^{-1} (756 \mu m)$
e-	Charge (single bunch)	3.4 nC
bunch	energy	30 GeV
	charge	1.1 nC
e+	energy	3 GeV
bunch	Transverse size	6.55 um
	Normalized emittance	17.472 mm·mrad
	Acceleration length	23.5 m
	gradient	1.166 GV/m
	Beam loading efficiency	19.00%
Results	e+ charge	1.1 nC
	e+ energy	30.42 GeV
	e+ rms energy spread	0.85%
	$e + \epsilon_x / \epsilon_y$	45mm∙mrad (x) 183mm∙mrad (y)

11iders, 2023

Energy compression for positron beam

A. Ferran Pousa, et al. PRL 129, 094801 (2022)

Linac and damping ring design

Summary of CEPC plasma injector

- Overall conceptual design already has several versions.
- > Parameter design and tolerance analysis for electron acceleration show high feasibility.
- ➢ Baseline design for positron acceleration arm is almost done.
- Results from PIC simulations basically fulfill the requirement of booster.
- ➢ It needs quite a lot of synergy between the rf accelerator and plasma accelerator group.

Test Facility (*a*) **IHEP**

Test Facility @ IHEP

➤ Short Term Goal:

- New transport beamline installation & commissioning
- New Final Focus system in Exp. Hall
- Clean room + laser system installation + laser-beam synchroniza
- 10+ nC L-band RF gun design

Thanks for your attention!