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Impedance Mismatches

• ROOT File <-> Machine Learning (uproot is everywhere nowadays)

• Big data <-> PyROOT (python for-loops are slow)

• HEP Physicist <-> Industry (we are a subset of wider data science)
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Scientific Python
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• A package in the scientific python ecosystem
- $ pip install coffea  
• A user interface for columnar analysis 
- With missing pieces of the stack filled in
• A minimum viable product
- We are data analyzers too #dogfooding
• A really strong glue  

• Going strong for five years
- Many published analyses now

Coffea is



18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea5

What is columnar analysis?

• Event loop analysis:
- Load relevant values for a specific event into local variables
- Evaluate several expressions
- Store derived values
- Repeat (explicit outer loop)

• Columnar analysis:
- Load relevant values for many events into contiguous arrays
- Evaluate several array programming expressions
• Implicit inner loops
• Plan analysis by composing data manipulations
- Store derived values
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From K. Pedro
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From K. Pedro
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This talk:
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Concrete example:

Columnar

cut = (events.MET.pt < 100.) & (events.Electron.pt > 30.) 
hist.fill(eta=events.Electron.eta[cut].flatten())

Event loop

void MyClass::Loop() { 
  size_t nEvents; 
  // load... 

  for (Long64_t iEvent=0; iEvent<nEvents; iEvent++) { 
    double MET_pt; 
    int nElectron; 
    double * Electron_pt; 
    double * Electron_eta; 
    // load... 

    if ( MET_pt > 100. ) continue; 

    for(size_t iEl=0; iEl<nElectron; ++iEl) { 
      if ( Electron_pt[iEl] > 30. ) { 
        hist->Fill(Electron_eta[iEl]); 
      } 
    } 
  } 
}

Delayed Columnar

# “array” operations only describe what is to be done 
cut = (events.MET.pt < 100.) & (events.Electron.pt > 30.) 
hist.fill(eta=events.Electron.eta[cut].flatten())  
# in order to render a result, we ask for it 
hist.compute()
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Practicalities: Writing Code (1)

• Minimal boiler plate to enter delayed, out-of-core computing environment
• Nanoevents interface is the same as with awkward1
- Arrays from flat input file are organized into physics object concepts
- Only major difference is now when you want something computed you .compute() it
• cf. dask.persist() - no time in this talk, it is a whole can of worms, see extras / chat over coffee!

• Largely user needs to change “ak.action” to “dak.action”

7

dask_histogram + hist

local dask-distributed cluster (can omit, or extend to condor)

https://www.youtube.com/watch?v=McKSS_WjLwU
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Practicalities: Writing Code (2)

• Example: Query 8
- from ADL Benchmarks

• This is an example of doing 
combinatorics using columnar 
data operations
- Note no for-loop or skipping logic
- Analysis logic more like writing a 

flow chart rather than dealing with 
specifics of data structure
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https://github.com/CoffeaTeam/coffea-benchmarks/blob/coffea2023/coffea-adl-benchmarks.ipynb
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Practicalities: Writing Code (3)

• Systematics are one of the most critical aspects of 
HEP analysis development
- Without systematics we cannot do our science
- Performing critical tasks in code should be clear and 

intuitive
• In coffea 2023, distributed, parallel systematics 

loops are written as loops over systematic variations
- Successive dask_histogram fill calls can be distributed 

across nodes and resulting sub-histograms aggregated
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Shortened example of 
systematics task 
graph from code 
below

dask-wrapped correctionlib
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An example in EDM4HEP!

• Pleasantly, ILD EDM4HEP nanoevents looks quite similar to CMS NanoAOD
- With some basic integration of EDM4HEP into coffea much more left to do!
• Wrote up a simple Higgs recoil plot, could be extended with systematics
- Accurate determination of columns to read also working out of the box

10
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Conclusions and Next Steps

• coffea is preparing a new release
- In addition to recent major update of coffea (“coffea 2023”): now including EDM4HEP
• Pleasant code writing and user interface, scalable to LHC-sized datasets
• Opens up a very large space of physicists (e.g. FNAL LPC) to dive into future colliders!
- aim for a complete, robust release this summer or early fall
• pip install --pre coffea --upgrade if you want to try it out now! (works on arm too)

• This update represents the culmination of ~4 years of R&D, in addition to 
maintaining successful deployment, and supporting analyses
- The changes as a result of this research set scientific-python based analysis on a 

course for achieving extreme performance at scale in the busy distributed system of 
HEP production and analysis computing

• Next for EDM4HEPSchema is to include cross references & other collections
- Will enable low-level to high-level physics analysis
- As well as physics performance micro-optimization (detailed selection on low level info)
- Moreover: training-to-inference ML analysis lifecycle extremely easy in python!

11
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Extras

12
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Dask

• Dask provides an interface for specifying/locating input data and then 
describing manipulations on that data are organized into a task graph
- This task graph can then be executed on local compute or on a cluster
• Dask Array and Dask Dataframe deal well with rectangular data
- Provide a scalable interface to describe manipulations of data that may not fit into 

system memory by mapping transformations onto partitions of the data that fit in memory

13
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Benchmark Results comparing to coffea 0.7 / ak1

• New benchmarks using whole-node at FNAL Elastic Analysis Facility (EAF)
- Confirm no performance degradation compared to coffea 0.7 (further improvement coming)
- “Setup time” dominated by spinning up full dask worker nodes (subtract off benchmark)
• Graph and column optimization still included in “Coffea 2023 (-setup)”
- Column optimization runs mock task graph in local single thread

14
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Further Thoughts to Consider

• dask_awkward fundamentally changes how we can describe analysis
• dask_awkward-based analyses, via dask task graphs, are rendered into a 

general, complete, declarative analysis description language (ADL)
- It looks curiously reminiscent of lisp, but no one would want to write by hand
- Luckily, using dask writes it for us so we can reap the advantages
• This means we have a preservable, extensible, and generalized description 

of HEP analysis code that we can overlay on arbitrary compute resources
- “achievement unlocked”
• dask_awkward can robustly predict data requirements without full execution
- Using only file metadata, without altering user code (aside from initial adoption)
- This alone radically changes our ability to optimize compute systems
- Named data networks, interfaces with network transfer schedulers, can be hidden from 

users of analysis facilities - enormous potential for system-level optimization
• dask_awkward can make skims in the process of the complete data analysis
- See extras, skimming + dask.persist() stand to wildly alter analysis data lifecycles and 

multi-user interaction
• Multiple task scheduling projects are moving to dask task graphs (portability!)

15
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awkward array 2.0, dask_awkward, dask_histogram, and coffea

• Awkward array 2.0 features an improved and streamlined backend 
- Only C and python, no C++ metadata handling
- Removal of ak.virtual delayed computations (to be replaced by dask_awkward)
• dask_awkward and dask_histogram bring delayed, distributed computation to 

awkward array 2.0 based analyses and libraries
- Providing access to dask at all layers of analysis yields improved parallelism and better 

factorization away from compute infrastructure
• Coffea (particularly nanoevents) was almost entirely based on ak.virtual

16

Coffea 0.7 Coffea 2023 (yes, we switched to CalVer)

( () )awkward-array
hist
dask, parsl, etc.

dask_awkward( 
    awkward-array 
)
hist(dask_histogram)
dask, parsl, etc.
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Optimization Example: Q8
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query  
beginning

query  
end

• Raw HEP analysis task graphs get large quickly
- Reasonably complete analysis, full systematics, is ~7000 layers as written by the user
- Q8 (top) here is 78 layers
- Each task-graph node could be executed on a different cluster resource (data transfer!)
• Dask provides standard optimizers to minimize node multiplicity
- This minimizes data transfer overhead and task-spawning overhead
- These optimizations are applied by default, yielding 2 layers for Q8
- Reasonably complete analysis is 234 layers post-optimization (ops fuse to hist filling)

query  
beginning

query  
end

dask.optimize(q8_hist)
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dask.persist (checkpointing)

• Spawn background processing whose output can be referenced as a new 
array in the distributed cluster memory
• With local memory cache (given enough memory) can explore / iterate on 

data extremely quickly
• Resilient through node recycling (in a single dask cluster)
- Perpetual dask clusters are not an anti-pattern

18

returns immediately, processing runs in background

Further calls and 
manipulations 
reference to-be 
persisted data

riffing on ADL Q8:
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dak.to_parquet (skimming)

• Then you hists, _ = dask.compute(histograms, skim)
• In specified directory you get a parquet dataset which you can start further 

analysis from or share with collaborators
- ROOT output will happen in time, parquet for skims is functionally equivalent
• Combined with dask.persist allows interestingly fine-grained control of 

data lifecycle in analysis that we don’t know best practices for :-)

19

dask handle for delayed running of skim

Further calls run 
stepwise as 
normal. Skim 
runs in parallel.
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more user analysis tools: cutflows and N-1 histograms

• Work by Iason Krommydas (Rice) to automate essential early-analysis data 
exploration
- N-1 plots and cutflow tables rendered as dask task graphs or eager arrays from book-

keeping class “PackedSelection”
- Expressive, easy-to-use extension to existing, adopted tools within coffea
• Solves an often requested, and otherwise home-grown, feature for coffea

20

N-1 plots:

cutflows:

https://github.com/iasonkrom
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more user analysis tools: common machine learning interface

• Work by Yi-Mu Chen (UMD) to connect ML inference to dask-based 
workflows
- Automatic upload of ML model (if necessary) to dask cluster, fetch to nodes evaluating
- One entry point, with some configuration for triton, xgboost, PyTorch, et al.
• Aim to provide easy migration of coffea+ML workflows to coffea 2023

21

nvidia triton PyTorch xgboost

https://github.com/yimuchen

