
Lindsey Gray
LCWS 2023 - SLAC
18 May 2023

Columnar Analysis for Lepton Colliders using Coffea

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea2

Impedance Mismatches

• ROOT File <-> Machine Learning (uproot is everywhere nowadays)

• Big data <-> PyROOT (python for-loops are slow)

• HEP Physicist <-> Industry (we are a subset of wider data science)

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea3

Scientific Python

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea4

• A package in the scientific python ecosystem
- $ pip install coffea
• A user interface for columnar analysis
- With missing pieces of the stack filled in
• A minimum viable product
- We are data analyzers too #dogfooding
• A really strong glue  

• Going strong for five years
- Many published analyses now

Coffea is

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea5

What is columnar analysis?

• Event loop analysis:
- Load relevant values for a specific event into local variables
- Evaluate several expressions
- Store derived values
- Repeat (explicit outer loop)

• Columnar analysis:
- Load relevant values for many events into contiguous arrays
- Evaluate several array programming expressions
• Implicit inner loops
• Plan analysis by composing data manipulations
- Store derived values

12

From K. Pedro

12

From K. Pedro

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea

This talk:

6

Concrete example:

Columnar

cut = (events.MET.pt < 100.) & (events.Electron.pt > 30.)
hist.fill(eta=events.Electron.eta[cut].flatten())

Event loop

void MyClass::Loop() {
 size_t nEvents;
 // load...

 for (Long64_t iEvent=0; iEvent<nEvents; iEvent++) {
 double MET_pt;
 int nElectron;
 double * Electron_pt;
 double * Electron_eta;
 // load...

 if (MET_pt > 100.) continue;

 for(size_t iEl=0; iEl<nElectron; ++iEl) {
 if (Electron_pt[iEl] > 30.) {
 hist->Fill(Electron_eta[iEl]);
 }
 }
 }
}

Delayed Columnar

“array” operations only describe what is to be done
cut = (events.MET.pt < 100.) & (events.Electron.pt > 30.)
hist.fill(eta=events.Electron.eta[cut].flatten())
in order to render a result, we ask for it
hist.compute()

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea

Practicalities: Writing Code (1)

• Minimal boiler plate to enter delayed, out-of-core computing environment
• Nanoevents interface is the same as with awkward1
- Arrays from flat input file are organized into physics object concepts
- Only major difference is now when you want something computed you .compute() it
• cf. dask.persist() - no time in this talk, it is a whole can of worms, see extras / chat over coffee!

• Largely user needs to change “ak.action” to “dak.action”

7

dask_histogram + hist

local dask-distributed cluster (can omit, or extend to condor)

https://www.youtube.com/watch?v=McKSS_WjLwU

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea

Practicalities: Writing Code (2)

• Example: Query 8
- from ADL Benchmarks

• This is an example of doing
combinatorics using columnar
data operations
- Note no for-loop or skipping logic
- Analysis logic more like writing a

flow chart rather than dealing with
specifics of data structure

8

https://github.com/CoffeaTeam/coffea-benchmarks/blob/coffea2023/coffea-adl-benchmarks.ipynb

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea

Practicalities: Writing Code (3)

• Systematics are one of the most critical aspects of
HEP analysis development
- Without systematics we cannot do our science
- Performing critical tasks in code should be clear and

intuitive
• In coffea 2023, distributed, parallel systematics

loops are written as loops over systematic variations
- Successive dask_histogram fill calls can be distributed

across nodes and resulting sub-histograms aggregated

9

Shortened example of
systematics task
graph from code
below

dask-wrapped correctionlib

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea

An example in EDM4HEP!

• Pleasantly, ILD EDM4HEP nanoevents looks quite similar to CMS NanoAOD
- With some basic integration of EDM4HEP into coffea much more left to do!
• Wrote up a simple Higgs recoil plot, could be extended with systematics
- Accurate determination of columns to read also working out of the box

10

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea

Conclusions and Next Steps

• coffea is preparing a new release
- In addition to recent major update of coffea (“coffea 2023”): now including EDM4HEP
• Pleasant code writing and user interface, scalable to LHC-sized datasets
• Opens up a very large space of physicists (e.g. FNAL LPC) to dive into future colliders!
- aim for a complete, robust release this summer or early fall
• pip install --pre coffea --upgrade if you want to try it out now! (works on arm too)

• This update represents the culmination of ~4 years of R&D, in addition to
maintaining successful deployment, and supporting analyses
- The changes as a result of this research set scientific-python based analysis on a

course for achieving extreme performance at scale in the busy distributed system of
HEP production and analysis computing

• Next for EDM4HEPSchema is to include cross references & other collections
- Will enable low-level to high-level physics analysis
- As well as physics performance micro-optimization (detailed selection on low level info)
- Moreover: training-to-inference ML analysis lifecycle extremely easy in python!

11

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea

Extras

12

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea

Dask

• Dask provides an interface for specifying/locating input data and then
describing manipulations on that data are organized into a task graph
- This task graph can then be executed on local compute or on a cluster
• Dask Array and Dask Dataframe deal well with rectangular data
- Provide a scalable interface to describe manipulations of data that may not fit into

system memory by mapping transformations onto partitions of the data that fit in memory

13

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea

Benchmark Results comparing to coffea 0.7 / ak1

• New benchmarks using whole-node at FNAL Elastic Analysis Facility (EAF)
- Confirm no performance degradation compared to coffea 0.7 (further improvement coming)
- “Setup time” dominated by spinning up full dask worker nodes (subtract off benchmark)
• Graph and column optimization still included in “Coffea 2023 (-setup)”
- Column optimization runs mock task graph in local single thread

14

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea

Further Thoughts to Consider

• dask_awkward fundamentally changes how we can describe analysis
• dask_awkward-based analyses, via dask task graphs, are rendered into a

general, complete, declarative analysis description language (ADL)
- It looks curiously reminiscent of lisp, but no one would want to write by hand
- Luckily, using dask writes it for us so we can reap the advantages
• This means we have a preservable, extensible, and generalized description

of HEP analysis code that we can overlay on arbitrary compute resources
- “achievement unlocked”
• dask_awkward can robustly predict data requirements without full execution
- Using only file metadata, without altering user code (aside from initial adoption)
- This alone radically changes our ability to optimize compute systems
- Named data networks, interfaces with network transfer schedulers, can be hidden from

users of analysis facilities - enormous potential for system-level optimization
• dask_awkward can make skims in the process of the complete data analysis
- See extras, skimming + dask.persist() stand to wildly alter analysis data lifecycles and

multi-user interaction
• Multiple task scheduling projects are moving to dask task graphs (portability!)

15

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea

awkward array 2.0, dask_awkward, dask_histogram, and coffea

• Awkward array 2.0 features an improved and streamlined backend
- Only C and python, no C++ metadata handling
- Removal of ak.virtual delayed computations (to be replaced by dask_awkward)
• dask_awkward and dask_histogram bring delayed, distributed computation to

awkward array 2.0 based analyses and libraries
- Providing access to dask at all layers of analysis yields improved parallelism and better

factorization away from compute infrastructure
• Coffea (particularly nanoevents) was almost entirely based on ak.virtual

16

Coffea 0.7 Coffea 2023 (yes, we switched to CalVer)

(())awkward-array
hist
dask, parsl, etc.

dask_awkward( 
 awkward-array 
)
hist(dask_histogram)
dask, parsl, etc.

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea

Optimization Example: Q8

17

query  
beginning

query  
end

• Raw HEP analysis task graphs get large quickly
- Reasonably complete analysis, full systematics, is ~7000 layers as written by the user
- Q8 (top) here is 78 layers
- Each task-graph node could be executed on a different cluster resource (data transfer!)
• Dask provides standard optimizers to minimize node multiplicity
- This minimizes data transfer overhead and task-spawning overhead
- These optimizations are applied by default, yielding 2 layers for Q8
- Reasonably complete analysis is 234 layers post-optimization (ops fuse to hist filling)

query  
beginning

query  
end

dask.optimize(q8_hist)

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea

dask.persist (checkpointing)

• Spawn background processing whose output can be referenced as a new
array in the distributed cluster memory
• With local memory cache (given enough memory) can explore / iterate on

data extremely quickly
• Resilient through node recycling (in a single dask cluster)
- Perpetual dask clusters are not an anti-pattern

18

returns immediately, processing runs in background

Further calls and
manipulations
reference to-be
persisted data

riffing on ADL Q8:

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea

dak.to_parquet (skimming)

• Then you hists, _ = dask.compute(histograms, skim)
• In specified directory you get a parquet dataset which you can start further

analysis from or share with collaborators
- ROOT output will happen in time, parquet for skims is functionally equivalent
• Combined with dask.persist allows interestingly fine-grained control of

data lifecycle in analysis that we don’t know best practices for :-)

19

dask handle for delayed running of skim

Further calls run
stepwise as
normal. Skim
runs in parallel.

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea

more user analysis tools: cutflows and N-1 histograms

• Work by Iason Krommydas (Rice) to automate essential early-analysis data
exploration
- N-1 plots and cutflow tables rendered as dask task graphs or eager arrays from book-

keeping class “PackedSelection”
- Expressive, easy-to-use extension to existing, adopted tools within coffea
• Solves an often requested, and otherwise home-grown, feature for coffea

20

N-1 plots:

cutflows:

https://github.com/iasonkrom

18 May 2023 L. Gray | Columnar Analysis for Lepton Colliders using Coffea

more user analysis tools: common machine learning interface

• Work by Yi-Mu Chen (UMD) to connect ML inference to dask-based
workflows
- Automatic upload of ML model (if necessary) to dask cluster, fetch to nodes evaluating
- One entry point, with some configuration for triton, xgboost, PyTorch, et al.
• Aim to provide easy migration of coffea+ML workflows to coffea 2023

21

nvidia triton PyTorch xgboost

https://github.com/yimuchen

