

Reconstruction of long-lived particles at the ILD

Jan Klamka, A.F. Żarnecki University of Warsaw

Motivation

• Various BSM models predict LLPs:

 \rightarrow SUSY particles, axion-like particles, heavy neutral leptons, dark photons, exotic scalars...

- Multiple LLP searches at the LHC, sensitive to high masses and couplings

 → complementary region could be probed at e⁺e⁻ colliders (small masses, couplings, mass splittings)
 → typical properties of feebly interacting massive particles (FIMPs)
- ILD potentially promising with a \underline{TPC} as the main tracker
- Study such challenging signatures from the **experimental perspective**
- Focus on a generic case two tracks from a displaced vertex
- No other assumptions about the final state, approach as general as possible

Vertex finding strategy

Approach as simple and general as possible:

- Consider tracks in pairs
- As the TPC is not sensitive to track direction:

 \rightarrow use both track direction (charge) hypothesis for vertex finding

- \rightarrow consider opposite-charge track pairs only
- \rightarrow select pair with closest starting points
- Reconstruct vertex in between points of closest approach of helices
 - \rightarrow Require distance < 25 mm

Test signal scenario – heavy scalars

First challenging scenario (small-boost, low-p_T track pair, not pointing towards IP):

- pair production of <u>heavy, neutral scalars</u> from Inert Doublet Model (IDM): A (heavier) and H (lighter; stable dark matter candidate)
- A can be long-lived for **small mass splittings** between A and H
- dominant decay: A \rightarrow HZ*; Z* \rightarrow $\mu\mu$ decay used for vertex reconstruction studies

Overlay events reduction

 $\gamma\gamma \rightarrow hadrons$ and seeable e^+e^- pairs occur in each bunch-crossing, and will not only overlay on physical events, but can look like signal on their own

- ~10¹⁰ bunch-crossings per year at ILC
- kinematics similar to signal
 - \rightarrow expected to give dominant contribution as a <u>separate background</u>

Overlay events reduction

 $\gamma\gamma \rightarrow hadrons$ and seeable e^+e^- pairs occur in each bunch-crossing, and will not only overlay on physical events, but can look like signal on their own

- ~10¹⁰ bunch-crossings per year at ILC
- kinematics similar to signal

 \rightarrow expected to give dominant contribution as a <u>separate background</u>

Vertex finding algorithm designed for TPC

 \rightarrow take into account only decays inside its region

Vertices from **split** and **fake tracks**, or random **intersections** \rightarrow a set of <u>preliminary cuts</u> on:

- tracks opening angle and curvature ratio
- distance from vtx to first track hit, relative to the track length
- number of hits in a track

Overlay events – final selection

- ~10¹⁰ events expected per year: reduction by ~10⁻⁹ needed
- Limited MC statistics \rightarrow <u>high uncertainties</u> already at a reduction factor of ~10⁻⁵

The idea: find <u>independent</u> cuts that **combined** give highest possible efficiency

First (obvious) variable: **p**_T

<u>Second variable:</u> combination of **distances between reference points** and centres of helices projections into XY plane (helix circles)

Total expected reduction factor at the level of $\sim 10^{-9}$ ($\sim 10^{-10}$) for $\gamma\gamma \rightarrow had$. (e⁺e⁻ pairs)

Results (IDM signal)

Δm	1 GeV	2 GeV	3 GeV	5 GeV
Tot. eff. (correct / decays within TPC acceptance)	3.9%	37%	52.2%	60.4%
Corectness (correct / all found)	96.4%	97.4%	98.8%	98.6%

- Consider "correct" if distance to the true vtx < 30 mm
- Signal selection depends strongly on the mass splitting (Z* virtuality)
- $\Delta m = 1$ GeV scenario beyond reach after selection

Test signal scenario – highly boosted light LLPs

Exactly the opposite extreme scenario (small LLP mass, very high pT, collinear tracks):

- axion-like particle (ALP) produced alongside hard photon (UFO model by R. Schafer, S. Bruggisser, S. Westhoff)
- Use the **same procedure** as for IDM (same algorithm, cuts), $a
 ightarrow \mu \mu$ decay used for studies
- Number of decays within acceptance strongly varies between signal scenarios

Results (ALPs signal)

m _a	0.3 GeV	1 GeV	3 GeV	10 GeV
Tot. eff. (correct / decays within acceptance)	31%	68%	86%	87%
Corectness (correct / all found)	53%	86%	95%	97%
TPC eff. (correct / decays within TPC acceptance)	17%	56%	86%	97%
Corectness in TPC (correct / all found)	37%	82%	96%	100%

- In the TPC: limited statistics, lower efficiency than for small radii
- High efficiency for masses from 1 GeV

16/05/23 LCWS'23 J. Klamka Reconstruction of long-lived particles at the ILD

Alternative all-silicon ILD design

<u>Alternative ILD design</u> implemented for tests by D. Jeans

- **TPC replaced** by the **silicon Outer Tracker**, modified from the CLICdet
- One barrel layer added and endcap layers spacing increased w.r.t. CLICdet
- **Conformal tracking** algorithm (designed for CLICdet) used for reconstruction at all-silicon ILD

CLICdet tracker region (CLICdp)

 \rightarrow Check how the <code>results</code> for <u>heavy scalars</u> are influenced by a <code>change of tracker</code> design

Heavy scalars at all-silicon ILD

- <u>Vertex reconstruction</u> driven by track reconstruction efficiency
- Performance similar to baseline design (TPC) $\underline{near \ the \ beam \ axis}$
- Smaller number of hits available \rightarrow efficiency drops faster with vertex displacement
- At least ${\bf 4}$ hits required for track reconstruction \rightarrow limited reach
- For large decay lengths, efficiency significantly higher for "standard" ILD with TPC

Summary

- We study LLPs in parameter space regions complementary to LHC searches
- Events with two tracks from a displaced vertex analysed
 - \rightarrow a simple algorithm developed, with a set of cuts aimed to suppress background from the overlay events
- For heavy scalars production, with small mass splittings between LLP and DM and low-momenta decay products, good sensitivity from $\Delta m = 2 \text{ GeV}$
- Reconstruction of **highly boosted**, **light** ALPs decaying into muons performed with the same algorithm and procedure
 - → first results indicate good sensitivity for ALP masses of 1 GeV and higher
- Alternative ILD design used for comparison between all-silicon tracker and TPC
 - → tracking tests for heavy scalars confirm **higher reach of TPC** in LLP searches

BACKUP

16/05/23 LCWS'23 J. Klamka Reconstruction of long-lived particles at the ILD

Consider a vertex ", correct" if distance to the true vtx < 30 mm

10

10²

Ē

0

Distance to the true vertex

180 200 Δ R_{vtx} [mm]

200

120

140

160

overlav

1. Large number of tracks starting near primary vertex

• Simple ,,helix distance" approach not accurate enough for numerous soft tracks starting close by in this region of the detector

) 2000 R[mm]

2. Split tracks

Due to missing hits, single track can often be reconstructed as several

Because we consider both possible track directions, a vtx can be found in between

- \rightarrow Cuts on opening angle $\cos(\alpha) > -0.6$ and tracks' curvatures ratio $|\Omega_1/\Omega_2| < 0.94$ (equiv. to p_T ratio)
- \rightarrow Additionally require at least one track with Ndf > 40 to remove vertices from short and fractional tracks

3. Artificial short high- p_T tracks

Fraction of hits in a curler can get clustered and formed into a **high-p**_T **track**

 \rightarrow Remove vtx candidates with tracks having $p_{\rm T}$ >1.5 GeV and $N_{\rm df}$ < 70

Tracks often randomly cross and intersect With our (basic) approach vertices are found at the intersections

- \rightarrow Cut on the **distance from vtx to first track hit** relative to the **track length**
- \rightarrow Use $\underline{\phi}$ or z, based on first-last hit distance in z

Final selection – pT

- We consider $\gamma\gamma \rightarrow had$. and e^+e^- samples separately
- Estimated background eff. from fitted distributions ~10⁻³ (~10⁻⁵–10⁻⁷ with preselection)
- Very small statistics in e^+e^- sample after preselection \rightarrow fit shape from $\gamma\gamma \rightarrow$ had. with floating normalisations

Final selection – other variables

- At least one more (independent) variable needed to achieve the assumed reduction
- We expect that **signal** tracks should come out of a single point → **reference points should be close**
- In busier backgound events, still many tracks evade the cuts e.g. curlers, secondary decays
- \rightarrow either far reference points or close centres of helices
- **d**_{ref} distance between reference points (TrackStates / first hits)
- d_c distance between centres of helices projections into XY plane

16/05/23

LCWS'23

J. Klamka

Final selection – second variable

- New variable(s) should be uncorrelated with pT to make the cuts independent
- $2.2d_{ref} d_{C}$ good for optimal signal-background separation \rightarrow use it to look for correlation

Reconstruction of long-lived particles at the ILD

Final selection – second variable

- Same approach as for the pT
- For $2.2d_{ref} d_{C} \le -2000 \text{ mm}$, signal eff. $\sim 37\%$ ($\Delta m = 2 \text{ GeV}$)
- Estimated background eff. from fitted distributions ~10⁻⁴ (~10⁻⁶–10⁻⁷ with preselection)
- Total expected efficiency at the level of $\sim 10^{-9}$ ($\sim 10^{-10}$) for $\gamma\gamma \rightarrow had.$ (e^+e^- pairs)

Selection assuming correlations

For small correlations *r* between *x* and *y*, total selection efficiency can be described as

$$\epsilon_{xy} = \epsilon_y^{(1-r)} \epsilon_x, \ \epsilon_x > \epsilon_y$$

For cuts on \mathbf{p}_{T} and $\mathbf{2.2d}_{ref} - \mathbf{d}_{C}$ (slide 5), assuming $\mathbf{30\%}$ correlation, for $\gamma\gamma \rightarrow$ had. (e⁺e⁻ pairs) that gives:

• 2.8·10⁻⁶ (3.4·10⁻⁶)

• $4.6 \cdot 10^{-8} (1.7 \cdot 10^{-9}) \leftarrow$ combined with preselection

Combined cut efficiency $x > 2 \cap y > 3$

26

Collinear tracks in TPC

- Impossible to distinguish the tracks close to the production vertex
- Tracking often assigns first hit of the second track far from vertex (small influence on reco. momentum)
- In vtx reco. we take two closest hits here it can be the two last hits!
 - Still find a vertex if it's closer to the other pair of hits, take TrackStates in this other pair

