The CEPC Studies, R&Ds and Status, and Synergies with the LC Community

Jingbo Ye (for the CEPC study group)

Institute of High Energy Physics
Chinese Academy of Sciences

LCWS2023 @ SLAC, May 15 - 19, 2023

Outline

- ➤ Introduction to the Circular Electron Positron Collider (CEPC)
 - Brief history and the Plan
- > Studies, R&Ds and Status, and Synergies with the LC Community
 - Physics Programs
 - Accelerator R&Ds
 - Detector R&Ds
 - > Synergies with the LC Community
- Other Aspects (briefly and if time permits)
 - Synergies in IHEP and industry engagement
 - > the CEPC team, committees, international efforts/contributions
 - > Project site candidates and timeline
- > Summary and Prospect

CEPC: the Circular Electron Positron Collider

- Proposed in 2012 right after the Higgs discovery, CEPC will be an e⁺e⁻ facility, a Higgs factory producing Higgs, W and Z bosons, and top quarks, for precision measurements and searches of new physics beyond the Standard Model (BSM).
- The penciled construction starts in 2026 and operation in 2030s.
- Upgrade in mind: Super pp Collider (SppC) of $\sqrt{s} \sim 100$ TeV in the future.

One of the proposed Higgs factories

CEPC versus FCC-ee

- Collisions expected in 2030s
- Large tunnel cross section (ee & pp coexistence)
- Lower cost: ~ ½ the construction cost with similar luminosity up to 240 GeV

CEPC versus Linear Colliders

- Higher luminosity for Higgs and Z runs
- Potential upgrade for pp collider
- LCs have higher energy potentials and in principle polarized beams

Reached Major Milestones

Action Plan Since CDR

CEPC CDR: first for a circular e⁺e⁻ Higgs factory

Since 2019

CEPC project with many R&Ds towards

- (1) Accelerator TDR (2023)
- (2) Detector key technologies R&D and establishment of seeds for International Collaborations

Identify challenges and devise solutions

Studies, R&D and Status, and Synergies with LC

- Physics Programs
- Accelerator R&D
- Detector R&D
- > Synergies with the LC Community

Physics Programs (in CDR)

e⁺e⁻ annihilations at the CEPC

- Will perform detailed studies of various physics processes
- Higgs bosons will be detected via recoil mass of the reconstructed Z, allowing for model independent & full investigation of the Higgs and any new physics that Higgs may reveal
- Jets and events with missing neutrinos will be well reconstructed and identified

Chinese Physics C Vol. 43, No. 4 (2019) 043002

❖ O(100) Journal / arXiv papers

Physics Programs (thrgh workshops + white papers)

Physics similar to FCC-ee, ILC, CLIC

- 2019.3 Higgs White Paper published (CPC V43, No. 4 (2019) 043002)
- 2019.7 Workshop@PKU: EW, Flavor, QCD working groups formed
- 2020.1 Workshop@HKUST-IAS: Review progress, EW draft ready
- 2021.4 Workshop@Yangzhou: BSM working group formed
- 2022.5 Workshop of CEPC physics, software and detector
- ❖ 2022 Input for Snowmass study arXiv:2205.08553

CEPC Operation mode		ZH	Z	W ⁺ W ⁻	ttbar
\sqrt{s} [GeV]		~ 240	~ 91.2	~ 160	~ 360
Run time [years]		7	2	1	-
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
CDR (30MW)	$\int m{L} \ m{dt}$ [ab ⁻¹ , 2 IPs]	5.6	16	2.6	-
(30)	Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷	-
Run time [years]		10	2	1	5
TDR	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	191.7	26.6	0.8
(50MW)	$\int m{L} \ m{dt}$ [ab $^{ ext{-}1}$, 2 IPs]	20	96	7	1
(latest)	Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	5×10 ⁷	5×10 ⁵

Physics Programs (compare w/ LHC)

Unprecedented precision measurements on Higgs, EW, flavor physics and QCD

• BSM physics (e.g. dark matter, EW phase transition, SUSY, LLP, ...) probed up to ~10 TeV

scale

	$240\mathrm{GeV},20~\mathrm{ab}^{-1}$		360 GeV, 1 a		ab^{-1}	
	ZH	$\mathbf{v}\mathbf{v}\mathbf{H}$	ZH	vvH	eeH	
inclusive	0.26%		1.40%	\	\	
$_{ m H o bb}$	0.14%	$\boldsymbol{1.59\%}$	0.90%	1.10%	4.30%	
Н→сс	2.02%		8.80%	16%	20%	
$_{ m H ightarrow gg}$	0.81%		3.40%	4.50%	12%	
$H{ ightarrow}WW$	0.53%		2.80%	4.40%	6.50%	
$H{ ightarrow} ZZ$	4.17%		20%	21%		
H o au au	0.42%		2.10%	4.20%	7.50%	
$H o \gamma \gamma$	3.02%		11%	16%		
$H o \mu\mu$	6.36%		41%	57%		
$H o Z \gamma$	8.50%		35%			
$Br_{upper}(H \to inv.)$	0.07%					
Γ_H	1.65%			1.10%		

Physics Programs: Higgs and EW

- Unprecedented precision measurements on Higgs, EW, flavor physics and QCD
- BSM physics (e.g. dark matter, EW phase transition, SUSY, LLP, ...) up to ~10 TeV scale

Observable	current precision	CEPC precision (Stat. Unc.)	CEPC runs	main systematic
Δm_Z	2.1 MeV [37–41]	$0.1~{ m MeV}~(0.005~{ m MeV})$	Z threshold	E_{beam}
$\Delta\Gamma_Z$	$2.3 \ \mathrm{MeV} \ \ [37-41]$	$0.025~{ m MeV}~(0.005~{ m MeV})$	Z threshold	E_{beam}
Δm_W	9 MeV [42–46]	$0.5~\mathrm{MeV}~(0.35~\mathrm{MeV})$	WW threshold	E_{beam}
$\Delta\Gamma_W$	49 MeV [46–49]	$2.0~\mathrm{MeV}~(1.8~\mathrm{MeV})$	WW threshold	E_{beam}
Δm_t	$0.76~\mathrm{GeV}~[50]$	$\mathcal{O}(10)~\mathrm{MeV^a}$	$t\bar{t}$ threshold	
ΔA_e	4.9×10^{-3} [37, 51–55]	$1.5 \times 10^{-5} \ (1.5 \times \ 10^{-5})$	Z pole $(Z \to \tau \tau)$	Stat. Unc.
ΔA_{μ}	0.015 [37, 53]	$3.5 \times 10^{-5} \ (3.0 \times \ 10^{-5})$	Z pole $(Z \to \mu\mu)$	point-to-point Unc
$\Delta A_{ au}$	4.3×10^{-3} [37, 51–55]	$7.0 \times 10^{-5} (1.2 \times 10^{-5})$	Z pole $(Z \to \tau \tau)$	tau decay model
ΔA_b	$0.02 \ [37, 56]$	$20{\times}10^{-5}\ (3{\times}10^{-5})$	Z pole	QCD effects
ΔA_c	0.027 [37, 56]	$30 \times 10^{-5} \ (6 \times 10^{-5})$	Z pole	QCD effects
$\Delta\sigma_{had}$	37 pb [37–41]	$2~\mathrm{pb}~(0.05~\mathrm{pb})$	Z pole	lumiosity
δR_b^0	0.003 [37, 57–61]	$0.0002~(5\times10^{-6})$	Z pole	gluon splitting
δR_c^0	0.017 [37, 57, 62–65]	$0.001~(2\times10^{-5})$	Z pole	gluon splitting
δR_e^0	0.0012 [37–41]	$2 \times 10^{-4} \ (3 \times 10^{-6})$	Z pole	E_{beam} and t channel
δR_{μ}^0	0.002 [37–41]	$1 \times 10^{-4} \ (3 \times 10^{-6})$	Z pole	E_{beam}
$\delta R_{ au}^0$	0.017 [37–41]	$1 \times 10^{-4} \ (3 \times 10^{-6})$	Z pole	E_{beam}
$\delta N_{ u}$	0.0025 [37, 66]	$2{\times}10^{-4}\ (3{\times}10^{-5}\)$	ZH run $(\nu\nu\gamma)$	Calo energy scale

Physics Program: Discovery Potential (BSM)

$$h \to X_{\rm dm} X_{\rm dm}$$

Higgs decays into BSM particles, $H \rightarrow X_1 X_2$

Compared with HL-LHC, CEPC has significantly better detection sensitivity for dark matter and selected Higgs exotic decays. The high luminosities that circular machines offer to physics complement the high energy potential of linear colliders.

Studies, R&D and Status, and Synergies with LC

- Physics Programs
- > Accelerator R&D
- > Detector R&D
- > Synergies with the LC Community

Design Improvements, from CDR (2018) to TDR (23)

- 100 km double ring design (30 MW SR power, upgradable to 50MW).
- Switchable operation for H & Z, W modes without hardware change.

TUNNEL CROSS SECTION OF THE ARC AREA

CEPC TDR S+C-band 30GeV Linac Injector

Operation	ZH	Z	W ⁺ W ⁻	tt	
\sqrt{s} [G	eV]	~240	~91.2	158-172	~360
	CDR (2018)	3	32	10	•
<i>L /</i> IP [×10 ³⁴ cm ⁻² s ⁻¹]	TDR (30MW)	5.0	115	16	0.5
[20 0 0]	TDR (50MW)	8.3	191.7	26.6	0.8

R&Ds on the Key Technologies

SRF technology

Vacuum

Magnets

High Q SCRF Cavities

- \rightarrow 1.3 GHz 9-cell SCRF cavity for booster: $Q_0 = 3.4E10 @ 26.5 \text{ MV/m}$
- 650 MHz 2-cell SCRF cavity for collider ring: $Q_0 = 6.0E10 @ 22.0 MV/m$
- 650 MHz 1-cell SCRF cavity for collider ring: $Q_0 = 6.0E10 @ 31.0 MV/m$

All SCRF satisfied CEPC design specifications! The 1.3 GHz SCRF cavity could be used for LCs

IHEP 1.3 GHz 9-cell Cavity Vertical Test

adopted to reach $Q_0 = 3.4E10 @ 26.5 \text{ MV/m}$

Vertical test of 650 MHz 2-cell cavity

N-infusion adopted to reach $Q_0 = 6.0E10 @ 22.0 MV/m$

 $Q_0 = 6.0E10 @ 31 MV/m$ $Q_0 = 2.1E10 @ 42 MV/m$

16

High Efficiency Klystrons

- The 1st Klystron prototype, design 65%, achieved efficiency ~ 63%.
- The 2^{nd} Klystron prototype tested at PAPS in 2022, design eff. is 77%, achieved eff. ~ 70.5% (so far), a window broke, under investigation + repairing
- The 3^{rd} Klystron (MBK) is being fabricated, design eff. is $\sim 80.5\%$.

High efficiency Klystron helps to reduce electricity consumption.

The 1st Klystron (tested)

The 2nd Klystron (testing) Efficiency, %

The 3rd multi-beam Klystron (MBK) under fabrication

HTS SC Magnet and Iron-Based Superconductor

- ➤ Stainless-steel stabilized IBS tape achieved the highest J_e in 2022
- ➤ Significantly reduced the cost and improve mechanical properties of IBS conductor.

The Plasma Injector

CEPC Plasma Injector V2.0 IHEP, THU, BNU

Booster Requirement			
Energy (GeV)	45.5		
Bunch Charge (nC)	0.78		
Bunch length (um)	<3000		
Energy Spread (%)	0.2		
ε _N (μm·rad)	<800		
Bunch Size (um)	<2000		

High eff. uniform wakefield acceleration of a positron beam using stable asymmetric mode in a hollow channel plasma

3D Quasi-static PIC simulations show: Energy extraction efficiency ~ 30% Energy spread ~ 1%

Plasma dechirper exp at SXFEL

- 1. Decrease the energy spread from 1% to 0.1%
- 2. Study Hollow channel impact on beam quality

IHEP's New SCRF Lab (PAPS) in Operation

CEPC SCRF Test Facility is located at IHEP Huairou Area (4500m²)

New SC Lab Design (4500m²)

Cryogenic system hall

SC New Lab (PAPS) has been in operation since June 2021

Vacuum furnace (doping & annealing)

Nb3Sn furnace

Nb/Cu sputtering device
Cavity inspection camera and grinder
9-cell cavity pre-tuning machine

Temperature & X-ray mapping system

Second sound cavity quench detection system

Helmholtz coil for cavity vertical test

Vertical test dewars

Horizontal test cryostat

Studies, R&D and Status, and Synergies with LC

- Physics Programs
- > Accelerator R&D
- Detector R&D
- > Synergies with the LC Community

Several Conceptual Detector Designs

Novel Conceptual Detector Design

Det	Technology		Det	Technology
	JadePix			Crystal ECAL
rte	TaichuPix		er	Si+W ECAL
θΛ I	Arcadia			Scint+W ECAL
Pixel Vertex	CPV(SOI)	Calorimeter	met	Scint AHCAL
	Stitching		alori	ScintGlass AHCAL
	TPC	ပြ	RPC SDHCAL	
PID	CEPCPix		MPGD SDHCAL	
Fracker & PID	Drift chamber		_	DR Calorimeter
cke	PID DC			Scintillation Bar
Tra	LGAD		Muon	RPC
	Silicon Strip		4	μ-Rwell
			Lumi	SiTrk+Crystal ECAL
			Lu	SiTrk+SiW ECAL

Novel detector design based on PFA calorimeter. Aim at improving BMR 4% → 3%

Detector	World-class level	CEPC design
PFA based (ECAL)	~ 15% / √E	< 3% / VE (Crystal ECAL)
PFA based (HCAL)	~ 50% / √E	\sim 40% / VE (Scintillating glass HCAL)

R&Ds on Silicon Pixel Chips

2 layers / ladder R_{in}~16 mm

JadePix-3 Pixel size \sim 16×23 μ m²

Tower-Jazz 180nm CiS process Resolution 5 microns, 53mW/cm²

MOST 1

Goal: $\sigma(IP) \sim 5 \mu m$ for high momentum track

CDR design specifications

- Single point resolution ~ 3µm
- Low material (0.15% X₀ / layer)
- Low power (< 50 mW/cm²)
- Radiation hard (1 Mrad/year)

Silicon pixel sensor develops in 5 series:
JadePix, TaichuPix, CPV, Arcadia, CEPCPix

CPV4 (SOI-3D), 64×64 array ~21×17 μm² pixel size

Develop **CEPCPix** for a CEPC tracker basing on **ATLASPix3 CN/IT/UK/DE**TSI 180 nm HV-CMOS process

Arcadia by Italian groups for IDEA vertex detector LFoundry 110 nm CMOS

MOST 2

R&Ds on Vertex Detector Prototype

Beam tests on the full vertex detector prototype (TaichuPix-3, JadePix-3) in DESY, Dec. 2022 and Apr. 2023:

Hitmap of 4 GeV e⁺/e⁻ beam

R&Ds on Drift Chamber for PID

- Goal: $3\sigma \pi/K$ separation up to ~20 GeV/c.
- Cluster counting method, or dN/dx, measures the number of primary ionization
- Can be optimized specifically for PID: larger cell size, no stereo layers, different gas mixture.
- Garfield++ for simulation, realistic electronics, peak finding algorithm development.

A Drift Chamber between 2 outer layers

Full silicon trackers

IHEP and Italian INFN groups have close collaboration and regular meetings. IHEP joined the beam-tests led by the INFN group in 2021 and 2022

R&Ds on the Time Projection Chamber

Baseline main tracker $\sigma(r-\phi) \sim 100 \mu m$

MOST 1 (IHEP+THU)

GEM-MM cathode TPC Prototype + UV laser beams

Low power FEE ASIC

Challenge: Ion backflow (IBF) affects the resolution. It can be corrected by a laser calibration at low luminosity, but difficult at high luminosity Z-pole.

R&Ds on PFA Calorimeters

Calorimeter options

Chinese institutions have been focusing on Particle Flow calorimeters

R&D supported by MOST, NSFC and IHEP seed funding

Electromagnetic

ECAL with Silicon and Tungsten (LLR, France)

ECAL with Scintillator+SiPM and Tungsten (IHEP + USTC)

Hadronic

SDHCAL with RPC and Stainless Steel (SJTU + IPNL, France)

SDHCAL with ThGEM/GEM and Stainless Steel (IHEP + UCAS + USTC)

HCAL with **Scintillator+SiPM** and Stainless Steel (IHEP + USTC + SJTU)

Hewer

Some longitudinal granularity

Crystal Calorimeter (LYSO:Ce + PbWO)

Dual readout calorimeters (INFN, Italy + Iowa, USA) — RD52

PFA Calorimeter Prototypes

ScW ECAL Prototype (32-layer, 6720-ch)

Sct + SiPM AHCAL Prototype (40-layer, 12960-ch)

→ Beam-test at CERN SPS for two prototypes in Oct. 2022

PFA Calorimeter Prototypes

> PFA ScW-ECAL & AHCAL prototypes: Beam-test at CERN SPS H8 (Oct. 2022)

USTC, IHEP, SJTU, Japanese & Israel groups have close collaboration and regular meetings. The next beam test is April – May (now) at CERN.

R&Ds on SDHCAL

SDHCAL-GRPC (1.3 m³, IPNL)

JINST 15, P10009 (2020) JINST 17, P07017 (2022)

RPWELL (50x50cm², WIS+IIT, Israel)

MOST 1: RPC and MPGD (RWELL) R&D, MIP Eff > 95%

GRPC 1m x 1m (SJTU)
JINST 16, P12022 (2021)

RWELL 0.5m x 1m (USTC+IHEP)

R&D Plan: 5-D SDHCAL (X, Y, Z, E, Time) - MRPC + fast timing PETIROC ASIC (~40 ps)

SJTU IPNL IJCLab OMEGA CIEMAT

R&Ds on High Granularity Crystal ECAL

Goal

- **Boson Mass Resolution < 4%**
- Better BMR than ScW-ECAL
- Much better sensitivity to γ /e, especially at low energy.

Bench Test

- Long bars: 1 x 40 cm, super-cell: 40x40 cm²
- Timing at both ends for positioning along bar.
- Significant reduction of number of channels.

Crystal Fan Design

Fine segmentation in Z, ϕ , r

Full Simulation Studies

+ Optimizing PFA for crystals

Performance with photons

Performance with jets

Dual readout crystal calorimeter also being considered by USA and Italian colleagues

R&Ds on New HCAL with Scintillating Glass Tiles

Full simulation studies

Tiles for AHCAL (30x30x3mm)

"SiPM-on-Tile" design for HCAL

 $ZH(Z \rightarrow \nu\nu, H \rightarrow gg)$ at 240 GeV

Varying glass thickness

Performance study with jets

Goal

- **Better hadronic energy resolution**
- To further improve BMR

Transmission

11 12 13 14

LY=660 ph/MeV

90 - GS2

80 GS3 70 - GS4

- GS5

0 + GS6

300 • GS2

200 - GS5

photon=146

LY=536 ph/MeV

LY=705 ph/MeV

Emission

photon=185

LY=680 ph/MeV

Scintillating Glass R&D

Testing Scintillating Glass Samples

R&Ds on IDEA Tracker and Dual Readout Calorimeter

Italian groups and IHEP colleagues participated the beam test at CERN.

Machine Detector Interface (MDI)

Crossing angle: 33 mrad

Focal length: 2.2 m

Final focusing magnets (QD0, QF1) with **Segmented Anti-Solenoidal Magnets**

2021 Workshop on CEPC Detector & MDI Mechanical Design, Oct.22-23 https://indico.ihep.ac.cn/event/14392/

CEPC探测器-加速器接口区域设计研讨会

22 Workshop on CEPC Detector & MDI Mechanical Design, Mar.30 – Apr. 1, 2023: https://indico.ihep.ac.cn/event/19071/

Workshop on CEPC Central Beampipe and Beryllium Application May 6, 2022, https://indico.ihep.ac.cn/event/16173/

CEPC Software Migration to Key4hep

Key4hep: an international collaboration with CEPC participation

CEPCSW: a first application of Kep4hep – Tracking software

CEPCSW is already included in Key4hep software stack

https://github.com/cepc/CEPCSW

Architecture of CEPCSW

- External libraries
- Core software
- CEPC applications for simulation, reconstruction and analysis

Core Software

Gaudi framework: defines interfaces of all software components and controls the event loop

EDM4hep: generic event data model

FWCore: manages the event data

GeomSvc: DD4hep-based geometry management service

CEPCSW Structure

Synergies with LC

- Circular machine's high luminosities at relatively low energies complement the high energies of linear colliders.
- The R&Ds on 1.3 GHz SCRF cavity and the high efficiency Klystron will benefit the accelerator communities, including the LCs'.
- The studies of machine and detector interface will benefit circular and linear colliders.
- The CPEC detector came from ILC-ILD. Due to different working modes and accelerator energy ranges, a lot of R&Ds and optimizations have been carried out. With the 4th concept CEPC detector, progresses made in PIDs, PFA Calorimeters, the possible use of scintillating glass tiles, and the idea of a SC magnet between the ECAL and HCAL, all will contribute to detector technologies, on circular machines and on linear colliders alike.

Other Aspects of CEPC

- > Synergies in IHEP and industry engagement
- the CEPC team, committees, international efforts/contributions
- Project site candidates and timeline

Synergies: IHEP experience with large projects

- IHEP is one of the few institutions in the world that can host a project like the CEPC:
 - It has rich management experience, and has successful constructed many large scientific facilities
 - It has full coverage of all technical disciplines for accelerators and detectors, in particular for the design, construction and operation of the circular e+e- collider (BEPCII) and the detector (BESIII)
 - It has all necessary infrastructures for constructions of large facilities
 - It has successfully hosted international projects such as BESIII, Daya Bay, JUNO, LHAASO, etc.
- IHEP is committed in CEPC, its workplan is endorsed by CAS

CEPC R&D and Tech Validation thrgh Running Prgms

Large amount of key technologies validated in other projects: BEPCII, HEPS, ...

CEPC R&D ~ 50% cost of acc. components

- ➤ High efficiency klystron
- ➤ 650MHz SRF cavities
- ➤ Key components to e+ source
- **➤** High performance Linac
- **Electrostatic Deflector**
- > Cryogenic system

- > Novel magnets: Weak field dipole, dual aperture magnets
- > Extremely fast injection/extraction
- Vacuum chamber tech.
- > Survey & Alignment for ultra large Acc.
- > MDI

BEPCII / HEPS

~ 40% cost of acc. components

- > High precision magnet
- > Stable magnet power source
- **➤** Vacuum chamber with NEG coating
- > Instrumentation, Feedback system
- > Traditional RF power source
- > SRF cavities

- **Electron Source, traditional Linac**
- Survey & Alignment
- Ultra stable mechanics
- Radiation protection
- Cryogenic system
- > MDI

~ 10% missing items consist of anticipated challenges in the machine integration, commissioning etc. and the corresponding international contribution

CEPC Industrial Promotion Consortium (CIPC)

※ 岩和 意博

正帆科技

CBWAC

- CEPC strongly promote relevant technology development (cost-benefit).
- **CEPC study group is surveying main international suppliers.**

CCT SC Magnet

Klystron

SC Coil Winding

The CEPC Team so far

Team (senior staff)

CEPC Organization

Table 7.2: Team of Leading and core scientists of the CEPC

Table 7.2	2. Team of Leading and core ser	chasts of the CLI C			
Name	Brief introduction Role in the CEPO				
Yifang Wang	Academician of the CAS, direc-	The leader of CEPC, chair of the SC			
	tor of IHEP				
Xinchou Lou	Professor of IHEP	Project manager, member of the SC			
Yuanning Gao	Academician of the CAS, head	Chair of the IB, member of the SC			
	of physics school of PKU				
Jie Gao	Professor of IHEP	Convener of accelerator group, vice			
		chair of the IB, member of the SC			
Haijun Yang	Professor of SJTU	Deputy project manager, member of			
		the SC			
Jianbei Liu	Professor of USTC	Convener of detector group, mem-			
		ber of the SC			
Hongjian He	Professor of USTC	Convener of theory group, member			
Shan Mana	agement	ofteam,			
Nu Xu	Professor of IMP	Member of the SC			
Meng Wang	Brofespr of SDI	Member of the SC			
Qing occo	no Scien	Member of the SC			
Wei Lu	Professor of THU	Member of the SC			
Joao Guimaraes da Costa	Professor of IHEP	Convener of detector group			
Jianchun Wang	Professor of IHEP	Convener of detector group			
Yuhui Li	Professor of IHEP	Convener of accelerator group			
Chenghui Yu	Professor of IHEP	Convener of accelerator group			
Jingyu Tang	Professor of IHEP	Convener of accelerator group			
Xiaogang He	Professor of SJTU	Convener of theory group			
Jianping Ma	Professor of ITP	Convener of theory group			

- Institution Board: 32 institutes, top universities/institutes in China
- Management team: comprehensive management experience at construction projects of BEPCII/CSNS/HEPS, and international projects of BESIII/Daya Bay/JUNO/...
- Accelerator team: fully over all disciplines with rich experiences at BEPCII, HEPS...
- Physics and Detector team: fully over all disciplines with rich experiences at BESIII,
 Daya Bay, JUNO, ATLAS, CMS, LHCb ...

Table 7.4: Team of the CEPC detector system

Table 7.3: Team of the CEPC accelerator system				1	Pixel Vertex	Zhijun Liang, Qun Ouyang,	CCNU, IFAE, IHEP, NJU,	~ 40	
	T		-		Detector	Xiangming Sun, Wei Wei	NWPU, SDU, Strasbourg,		
Number	Sub-system	Convener	Team (senior staff)		2	Silicon	Harald Fox, Meng Wang,	IHEP, INFN, KIT, Lan-	~ 60
1	Accelerator physics	Chenghui Yu, Yuan Zhang	18			Tracker	Hongbo Zhu	caster, Oxford, Queen Mary,	
2	Magnets	Wen Kang, Fusan Chen	12					RAL, SDU, Tsinghua, Bris-	
								tol, Edinburgh, Livepool,	
3	Cryogenic system	Rui Ge, Ruixiong Han	11					USTC, Warwick, Sheffield,	
4	SC RF system	Jiyuan Zhai, Peng Sha	1200	10.00				ZJU,	
5	Beam Instrumentation	Jiyuan Zhai, Peng Sha GCC Lautor	+ ~300	det	ect	Offis dS	Taris Shi, Cus		~ 30
6								INFN. NIKHEF. THU	
O	SC magnets	QQinfiren BE	PCTRFS	III / I:	\square	IO/F	HERS/	IHEP	~ 10
7	Power supply	Bin Chen, Fengli Long		111/3	<u></u>	Colorie de	Pelient Ning		
8	Injection & extraction	Jinhui Chen	CEDA) 	Calorimetry	Roberto Ferrari, Jianbei Liu,	CALICE Collab., IHEP,	~ 40
			nce CEPO	c al	זטנ	ove	aijun Yang, Yong Liu	INFN, SJTU, USTC	
9	Mechanical system	Jianli Wang, Lan Dong	4		6	Muon	Taolo Giacomeni, Etang Et,	FDU, IHEP, INFN, SJTU	~ 20
10	Vacuum system	Haiyi Dong, Yongsheng Ma	5	-	721	2	Xiaolong Wang		D-04
11	Control evetem		6		7	Physics	Manqi Ruan, Yaquan Fang,	IHEP, FDU, SJTU,	~ 80
11	Control system	Ge lei, Gang Li	0				Liantao Wang, Mingshui		
12	Linac injector	Jingyi Li, Jingru Zhang	13				Chen		
13	Radiation protection	Zhongjian Ma	3		8	Software	Shengseng Sun, Weidong	IHEP, SDU, FDU,	~ 20
1 60		117		Li, Xingtao Huang					
Sum			117		Sum			~ 300	

Number Sub-system

Conveners

CEPC International Committees

CEPC Organization

International Advisory Committees

Name	Affiliation	Country
Tatsuya Nakada	EPFL	Japan
Steinar Stapnes	CERN	Norway
Rohini Godbole	CHEP, Bangalore	India
Michelangelo Mangano	CERN	Switzerland
Michael Davier	LAL	France
Lucie Linssen	CERN	Holland
Luciano Maiani	U. Rome	San Marino
Joe Lykken	Fermilab	U.S.
lan Shipsey	Oxford/DESY	U.K.
Hitoshi Murayama	IPMU/UC Berkeley	Japan
Geoffrey Taylor	U. Melbourne	Australia
Eugene Levichev	BINP	Russia
David Gross	UC Santa Barbara	U.S.
Brian Foster	Oxford	U.K
Marcel Demarteau	ORNL	USA
Barry Barish	Caltech	USA
Maria Enrica Biagini	INFN Frascati	Italy
Yuan-Hann Chang	IPAS	Taiwan, China
Akira Yamamoto	KEK	Japan
Hongwei Zhao	Institute of Modern Physics, CAS	China
Andrew Cohen	University of Science and Techbnology	Hong Kong, China
Karl Jakobs	University of Freiburg/CERN	Germany
Beate Heinemann	DESY	Germany

International Accelerator Review Committee

- Phillip Bambade, LAL
- Marica Enrica Biagini (Chair), INFN
- Brian Foster, DESY/University of Hamburg & Oxford University
- In-Soo Ko, POSTTECH
- Eugene Levichev, BINP
- Katsunobu Oide, CERN & KEK
- · Anatolii Sidorin, JINR
- Steinar Stapnes, CERN
- Makoto Tobiyama, KEK
- Zhentang Zhao, SINAP
- Norihito Ohuchi, KEK
- Carlo Pagani, INFN-Milano

International Detector R&D Review Committee

- Jim Brau, USA, Oregon
- · Valter Bonvicini, Italy, Trieste
- Ariella Cattai, CERN, CERN
- Cristinel Diaconu, France, Marseille
- Brian Foster, UK, Oxford
- Liang Han, China, USTC
- Dave Newbold, UK, RAL (chair)
- Andreas Schopper, CERN, CERN
- Abe Seiden, USA, UCSC
- Laurent Serin, France, LAL
- Steinar Stapnes, CERN, CERN
- Roberto Tenchini, Italy, INFN
- Ivan Villa Alvarez, Spain, Santader
- Hitoshi Yamamoto, Japan, Tohoku
- ➤ IAC: global renowned scientists and top laboratory or project leaders who have ample experience in project management, planning, and execution of strategies, operating since 2015
- > IARC & IDRC: leading experts of this field, provide guide to the project director

CEPC International Efforts

CEPC attracts significant International participation

- Conceptual Design Report: 1143 authors from 221 institutes (including 140 Intl. Institutes)
- 20+ MoUs signed and executed
- Intensive collaboration on Physics studies
- Oversea scientists made substantial contributions to the R&D, especially to the detector system
- CEPC International Workshop since 2014
- EU-US versions of CEPC WS: Next one at Marseille
- Annual working month at HKUST-IAS (since 2015)
- The recent CEPC Workshop: Oct. 24-28, 2022 (423 registrants, 285 talks, 38 posters)
- The next CEPC EU Workshop: 3 6 July 2023, the Univ. of Edingurgh.

CEPC International Efforts

ESPPU input

CEPC Input to the ESPP 2018 - Physics and Detector

CEPC Physics-Detector Study Group

Abstract

The Higgs boson, discovered in 2012 by the ATLAS and CMS Collaborations at the Large Hadron Collider (LHC), plays a central role in the Standard Model. Measuring its properties precisely will advance our understandings of some of the most important questions in particle physics, such as the naturalness of the electroweak scale and the nature of the electroweak phase transition. The Higgs boson could also be a window for exploring new physics, such as dark matter and its associated dark sector, heavy sterile neutrino, et al. The Circular Electron Positron Collider (CEPC), proposed by the Chinese High Energy community in 2012, is designed to run at a center-of-mass energy of 240 GeV as a Higgs factory. With about one million Higgs bosons produced, many of the major Higgs boson couplings can be measured with precisions about one order of magnitude better than those achievable at the High Luminosity-LHC. The CEPC is also designed to run at the Z-pole and the W pair production threshold, creating close to one trillion Z bosons and 100 million W bosons. It is projected to improve the precisions of many of the electroweak observables by about one order of magnitude or more. These measurements are complementary to the Higgs boson coupling measurements. The CEPC also offers excellent opportunities for searching for rare decays of the Higgs, W, and Z bosons. The large quantities of bottom-quarks, charm-quarks, and tau leptons produced from the decays of the Z bosons are interesting for flavor physics. The

arXiv: 1901.03170

1901.03169

planning and the international organization of the CEPC. The next step for the CEPC team is to perform detailed technical design studies. Effective international collaboration would be crucial at this stage. This submission for consideration by the ESPP is part of our dedicated effort in seeking international collaboration and support. Given the importance of the precision Higgs boson measurements, the ongoing CEPC activities do not diminish our interests in participating in the international collaborations of other future electron-positron collider based

Snowmass input

Snowmass2021 White Paper AF3- CEPC

CEPC Accelerator Study Group¹

1. Design Overview

1.1 Introduction and status

The discovery of the Higgs boson at CERN's Large Hadron Collider (LHC) in JUN 2012 raised new opportunities for large-scale accelerators. The Higgs boson is the heart of the Standard Model (SM), and is at the center of many biggest mysteries, such as the large hierarchy between the weak scale and the Planck scale, the nature of the electroweak phase transition, the original of mass, the nature of dark matter, the stability of vacuum, etc. and many other related questions. Precise measurements of the properties of the Higgs boson serve as probes of the underlying fundamental physics principles of the SM and beyond. Due to the modest Higgs boson mass of 125 GeV, it is possible to produce it in the relatively clean environment of a circular electron-positron collider with high luminosity, new technologies, low cost, and reduced power consumption. In September 2012, Chinese scientists proposed a 240 GeV Circular Electron Positron Collider (CEPC), serving two large detectors for Higgs studies and other topics as shown in Fig. 1. The ~100 km tunnel for such a machine could also host a Super Proton Proton Collider (SPPC) to reach energies well beyond the LHC.

The CEPC is a large international scientific project initiated and to be hosted by China. It was presented for the first time to the international community at the ICFA Workshop "Accelerators for a Higgs Factory: Linear vs. Circular" (HF2012) in Novemb he

White R Yellow i arXiv: 2203.09451
has been internation in May: 2205.08553

CEPC accelerator entered the phase of Technical Design Report (TDR) endorsed by CEPC International Advisory Committee (IAC). In TDR phase, CEPC optimization design with higher performance compared with CDR and the key technologies such as 650MHz high power and high efficiency klystron, high quality SRF accelerator technology, high precision magnets for booster and collider rings, vacuum system, MDI, etc. have been carried out, and the CEPC accelerator TDR will be completed at

- > CEPC provides critical input to ESPPU & Snowmass as a major player
- > Team member actively participated intl. study (ESPPU and Snowmass committees) and Panel discussions
- > CEPC attracts intensive international collaboration, ensuring that the CEPC design and technology are among the most advanced in the world.

¹ Correspondance: J. Gao, Institute of High Energy Physics, CAS, China Email: aaoi@ihep.ac.cn

Candidate Sites and Science Cities

CEPC Project Timeline

2023: Accelerator TDR; 2026: EDR; Start construction upon approval

Summary and Prospects

- Since the CDR, lots of progresses have been made in physics program studies, accelerator and detector R&Ds. Contributions in the HEP international community (e.g. Snowmass21). Progresses and breakthroughs from the R&Ds may contribute to common technologies for other proposed Higgs factories.
- The Accelerator TDR is schedule to be in this year.
- The physics driven time-line is very aggressive. Lots of people (young and young at heart) are working hard towards the official start-line.
- Everyone in CEPC extends open arms to collaborations from the HEP community and beyond.

Acknowledgements

Many thanks to the CEPC study group for enormous efforts and achievements!

Thank you!

