

F. EOZENOU*, S. BERRY, E. CENNI, Y. KALBOUSSI, T. PROSLIER, C. SERVOUIN

LCWS23, Accelerator: Superconducting RF May 16th 2023

GOAL & OUTLINE

Continued effort for the improvement of SRF Cavities:

- Bulk Niobium: Vertical Electropolishing to reach ultimate performance
- Beyond Niobium: Multilayer superconducting structures for improvement of Q0 & Eacc
- Maintaining of the surface quality through the process: Cleanroom cleaning & assembly with a cobot
- Analysis of the tests: Diagnostics

VERTICAL ELECTROPOLISHING

F. EOZENOU, E. CENNI

Vertical EP process at Saclay

- VEP with rotating Ninja cathode
- External cooling of the cavity
- Better removal of H2
- Symetric removal
- But lower removal rate: \sim 0,1 µm/min

Nb removal along the cell

1-Cell cavity on VEP set-up

ROTATING TECHNOLOGY 'Ninja' Cathode by Marui Galvanizing company

Equator surface

(80µm average removal)

FJPPL France-Japan Particle Physics Laboratory collaboration

Vertical EP Parameters (704MHz Case)

Treatments Parameters	Value
Acid temperature (in tank)	15 °C
External cool down water	12 °C
Acid flowrate	15-20 L/min
Voltage	19-20 V
Current	25 A
Removal rate	0.1 μm/min
Electrolyte	$HF-H_2SO_4$
HF acid mass concentration	0.5%
Ethanol rinsing (static)	60 h
Ninja Cathode Parameters	Value
Number of wings	4
Al cylinder diameter	70 mm
Cathode rotation speed	20 rpm
PVC ext cylinder diameter	114 mm
Cathode/cavity surface ratio	0.2

Working Parameters:

U: 20V (Max voltage available)

- Acid flowrate: >15L/min
- T<15°C
- External Cooling of cavity wall
- Low HF concentration
- 20rpm rotation

Strong sulfur odour after treatment. \rightarrow Ethanol rinsing to avoid sulfur contamination

VEP Experiments with EH101 1C 704MHz cavity

Single cell cavity, geometry from **ESS** high beta (β =0.86) end cell

Vertical tests Results for EH101 1C 704MHz cavity

VT @2K CW

PAGE 7

Results @ 1.4K CW

1.3GHz 1C cavity: Test of the '2-step Baking' recipe at Saclay

• This baking recipe was successfully tested on 1AC3 1300MHz 1-cell cavity,

Excellent RF Peformance after VEP including '2-step baking' (FERMILAB recipe) at 75°C-120°C on Tesla 1300MHz single-cell cavity

See also

• THPOGE23 @ LINAC 2022

1.3GHz 1C cavity: No High Field Q-Slope observed in some cases

1DE8 1-Cell TESLA: Loan from DESY Limited performance due to scratches \rightarrow bulk VEP to recover

No clear HFQS after VEP. Eacc=34MV/m Field Emission due to residual scratches

OUTLOOK

- Apply the 2 step baking recipe on EH101 704MHz cavity
- Transfer of the process to 5Cell 704MHz cavity
- Study of HF concentration on a dedicated 1300MHz pristine single cell cavity
- Study of the effect on HFQS

Y. KALBOUSSI, T. PROSLIER

Freshly-built ALD system for cavity coating at CEA

- High vacuum oven:
 - $650^{\circ}C$ 10^{-6} mbar / $900^{\circ}C$ 1bar N₂

- Volume retort: Φ = 49 cm, L= 110 cm (1.3, 0.7 GHz cavities)

- Interface and control:
 - Labview program of ALD system and Oven.

- Automatic synthesis parameter control (overnight dep.) and monitoring.

Ongoing R&D activies

- Multilayer coating on Nb cavities
- Doping
- Multipacting mitigation

T.Proslier & Y.Kalboussi

Multilayer structure

- A theoretical approach proposed by A. Gurevich (2006) to improve RF cavities through depositing a superconducting multilayer to screen the magnetic field.
- The thickness of the superconductor must be lower than its penetration depth.
- The superconducting layer must have higher T_c than Nb.

Multilayer structure by ALD

> AIN is a good dielectric layer and has a good chemical stability.

Chemistry: Thermal ALD @ 450°C + Annealing @ 900°C

- > AIN was deposited using $A/Cl_3 + NH_3$
- NbTiN was deposited using a combinaison of TiN and NbN cycles n (TiCl₄ + NH₃) + m (NbCl₅ +NH₃) = Nb_{1-x}Ti_xN

Thermal ALD results in precise control of the NbTiN film chemical composition

T.Proslier & Y.Kalboussi

NbTiN ~ 50 nm

AIN ~ 10 nm

Multilayer structure by ALD

NbTiN (45 nm) – AIN (10 nm) – Niobium NbTiN (45 nm) – AIN (10 nm) – Sapphire covered 2,0×10⁻⁴ Sapphire Bare 0,0 Moment (emu) -2,0×10⁻⁴ -4,0×10⁻⁻ -6,0×10

 \succ T_c similar on Niobium and sapphire substrates (around 15 K)

9

10

11

12

13

Temperature (K)

14

15

16

17

18

T[K]

9 10 11 12 13 14 15 16 17 18 19 20

8 7

6

2

0

4 5 6

7 8

[[] 8 ප

- The first vortex penetration field is enhanced by 13.4 mT after NbTiN (45 nm) - AIN (10 nm) coating which can lead to an increase of 3 MV/m (1.3 GHz Tesla shape)
- The NbTiN thickness needs to be increased for optimal screening efficiency.

T.Proslier & Y.Kalboussi

First attempt of NbTiN-AIN coating on 1.3 GHz Nb cavity

The Niobium cavity was coated with NbTiN (45 nm) - AIN (10 nm) bilayer.

Before annealing

After annealing

- Vacuum degradation during the annealing step.
- Observed delamination in the beam tubes.
- The coated cavity showed overall degraded performances.
- More coating tests are ongoing to optimize the coating + annealing step …

3 CLEANROOM ASSEMBLY COBOT DEVELOPMENT

S. BERRY, C. SERVOUIN

Cea Production Cobot: nitrogen cleaning for ESS cavity strings (~20/30)

COBOT: COllaborative roBOT human can work nearby

Articuled Robot Vehicule – Ingeliance Solutions Cart dimension : 1250mm x 785mm height:865mm

ingéliance

Total weight: 190kg

FANUC CRX-10iA/L on an ARVIS cart (bought to Ingeliance company): 4 month to prepare, 5 days installation and commissioning, about 2 years production (starting May 2022)

Cobotisation : from cleaning to assembly

First issue addressed: reduce effort and hardship of flange cleaning

Development road map

Compressed air blowing (painfull reduction & reliable cleaning process)

- ÉSS production program adjustment (late 2022)
- new programme : bellows cleaning (early 2023) next slide
- ESS beam flanges clamps on cavities (late 2023) below

ESS Bellows Cleaning (used in production)

Development road map

ESS Bellows assembly (under development)

Development road map

4 DIAGNOSTICS

E. CENNI, G. DEVANZ, J. PLOUIN

γ -Diagnostic system for high performance cavities and cryomodule (1/2)

- ➢ We are interested in versatile and large-area coverage detectors:
 - Plastic scintillators can be shaped in different forms
 - Reasonably cheap with respect to the area coverage
 - Largely used in particle physics (e.g. Sci-Fi Tracker in LHCb)
- We started by testing a plastic block (10x50x1500mm) and fibers (Ø1x1500mm) as a proof of concept
- We are developing dedicated Geant4 applications for cryomodule and cavity testing allowing us to optimize detectors with respect to the radiation emerging from the cavities

Base plastic is Polyvinyl toluene (PVT)

ESS cryomodule installed in the test stand at Saclay

Scintillator block installed on ESS cryomodule during power test in Saclay, close to a NaI(Tl) scintillator.

27

- Detectors are at room temperature (easy to install and change configuration)
- Possibility to study field emission radiation pulse by pulse, with time resolution within the pulse (next slide)

cez

γ -Diagnostic system for high performance cavities and cryomodule 2/2

>

Proof of concept during ESS cryomodule test in CEA and Lund

CAV1 excited with **nominal pulse**, the maximum Eacc is about <u>21.2MV/m</u> (black), radiation detected by block at GM1 position, close to cavity (red), radiation detected by block (green) and from fiber (blue). *Right: zoomed and normalized view of the same pulse where it is possible to appreciate closely the change in the radiation amplitude due to Lorentz force detuning.*

Time-resolved radiation detection pulse by pulse

- 2D axial symmetry dedicated particle tracking code
- Customizable particle-matter interaction application

Particle tracking code

Single emitter trajectories calculation with <u>one cavity</u> <u>powered (CAV4)</u> while the adjacent is off (CAV3). Trajectory colours are determined with respect to the electrons kinetic energy. All the impact on the beam tubes and adjacent cavity have energies between 12 and 15MeV.

Magnetic sensors (AMR) for SRF cavities

- Studying flux expulsion during superconducting cavities test increases the need for exhaustive magnetometric cartography.
- The use of Anisotropic Magneto Resistance (AMR) sensors, much cheaper than commercial fluxgates, allows the use of tens of sensors simultaneously.

Sensors calibration at CEA, comparison with other labs

Sensors (developed) and sensors arrays (in development) at CEA

J. Plouin, E. Cenni, L. Maurice, "AMR sensors studies and development for cavities tests magnetometry at CEA", in SRF2021 proceedings.doi:10.18429/JACoW-SRF2021-TUPCAV009

THANK YOU FOR YOUR ATTENTION