# Higgs self-coupling measurement at ILC500.

## LCWS2023

#### Julie Munch Torndal<sup>1,2</sup>, Jenny List<sup>1</sup>

<sup>1</sup>DESY, Hamburg <sup>2</sup>Universität Hamburg, Hamburg **May 16, 2023** 





## **Higgs self-coupling**

Higgs potential in SM after SSB

$$V(h) = rac{1}{2}m_{H}^{2}h^{2} + \lambda_{3}
u h^{3} + rac{1}{4}\lambda_{4}h^{4}$$

with  $\lambda_3^{SM} = \lambda_4^{SM} = \frac{m_H^2}{2\nu^2}$ 

Measure  $oldsymbol{\lambda}$ 

- $\bullet \rightarrow$  determine shape of Higgs potential
- $\bullet \rightarrow \mathsf{establish} \ \textbf{Higgs} \ \textbf{mechanism} \ \mathsf{experimentally}$

 $\bullet \to$  determine how the Universe froze in the EW sector, giving mass to gauge bosons, fermions, and the Higgs itself

BSM: deviations in  $\lambda \rightarrow$  new physics in Higgs sector



## **Higgs self-coupling**

#### Indirect access:

• through loop-order-corrections found from EFT fits using single Higgs measurements and running at two different *E*<sub>cm</sub>



#### Direct access:

through double-Higgs production

 $\frac{\Delta\lambda_{HHH}}{\lambda_{HHH}} = \mathbf{c} \cdot \frac{\Delta\sigma_{HHx}}{\sigma_{HHx}}$ 

→ cross section measurement



## Direct measurement of the Higgs self-coupling from $e^+e^-$



## Direct measurement of the Higgs self-coupling from $e^+e^-$



## The analysis from nearly a decade ago

#### DESY-THESIS-2016-027

State-of-the-art projections at ILC performed 7-10 years ago



#### **Precision reach**

After full ILC running scenario ( $HH \rightarrow bbbb + HH \rightarrow bbWW$ )

 $\rightarrow \Delta \sigma_{\rm ZHH} / \sigma_{\rm ZHH} = 16.8 {\rm \%}$ 

$$\rightarrow \Delta \lambda_{\rm SM} / \lambda_{\rm SM} = 26.6\%$$

 $\rightarrow~\Delta\lambda_{\rm SM}/\lambda_{\rm SM}~=10$  % when combined with additional running scenario at 1 TeV

Discovery potential clearly demonstrated

#### **Strategy for further improvements**

Better reconstruction tools now  $\ \ \rightarrow$ 

improve precision on  $\sigma_{\rm ZHH}$  and  $\lambda_{\rm SM}$  !



## Strategy for improving the Higgs self-coupling measurement at ILC

#### Overlay removal $\gamma \gamma \rightarrow \text{low}-p_T$ hadrons Expect $\langle N_{overlav} \rangle = 1.05$ event @ 500 GeV

Better modelling of the γγ overlay
 Advanced overlay removal strategy

#### Isolated lepton tagging

Optimised for  $\ell = \{e, \mu\}$ 

 $rac{1}{2}$  Dedicated search for aus

 $\begin{array}{l} \mbox{For } \varepsilon_\tau \sim \varepsilon_{e,\mu} \\ \rightarrow 8\% \mbox{ relative improvement in} \\ \Delta \sigma_{\rm ZHH} / \sigma_{\rm ZHH} \end{array}$ 

#### Jet clustering

Perfect jet clustering

 $\rightarrow \sim 40 \rm \%$  relative improvement in  $\Delta \sigma_{\rm ZHH}/\sigma_{\rm ZHH}$ 

#### Flavor tagging

- Improve b-tagging efficiency
  - For 5% relative improvement in  $\varepsilon_{b\text{-tag}}$   $\rightarrow 11\%$  relative improvement in  $\Delta\sigma_{\rm ZHH}/\sigma_{\rm ZHH}$

#### **Error parametrisation in kinematic fitting** Mass resolution $\propto$ iet energy resolution

Errorflow: Energy resolution parametrisation for individual jets



## Strategy for improving the Higgs self-coupling measurement at ILC



## Jet clustering



Perfect jet clustering:



- jet-finding ambiguities from high multiplicities in ZHH, ZZH and ZZZ events
- ightarrow degrades mass resolutions ightarrow reduces separation ightarrow reduces  $\delta\lambda$  by factor  $\sim 2$

### Misclustering Jet clustering



Julie Munch Torndal | LCWS2023 | May 16, 2023 | Page 8 DESY.

### Misclustering Jet clustering



Julie Munch Torndal | LCWS2023 | May 16, 2023 | Page 8 DESY.

## **Flavor tagging**

Improve b-tagging efficiency



Example @ 80% signal efficiency:

|                  | DBD | new | ATLAS |
|------------------|-----|-----|-------|
| 1-eff(c)         | 90% | 95% | 75%   |
| Rejection factor | 10  | 20  | 4     |



Better signal efficiencies observed in preselections

## Preselection in neutrino channel

#### PRELIMINARY

| Selection                                   | u  u HH (new)  | u  u HH (old) | $\epsilon_{sig}~({ m new})$ | $\epsilon_{bkg}~(\mathrm{old})$ |
|---------------------------------------------|----------------|---------------|-----------------------------|---------------------------------|
| Initial                                     | $89.8\pm0.6$   | 80.14         | 1.0                         | 1.0                             |
| $\#\ell_{ISO}=0$                            | $70.9\pm0.6$   | $62.4\pm0.1$  | 0.79                        | 0.78                            |
| $ M_{jj} - M_{II}  > 80 \text{ GeV}$        | $69.0\pm0.5$   | $61.0\pm0.1$  | 0.77                        | 0.76                            |
| bmax3 > 0.2                                 | $55.1 \pm 0.5$ | $28.2\pm0.1$  | 0.61                        | 0.35                            |
| $60 \text{ GeV} < M_{jj} < 180 \text{ GeV}$ | $53.2 \pm 0.5$ | $27.3\pm0.1$  | 0.59                        | 0.34                            |
| $10~{ m GeV} < p_{T} < 180~{ m GeV}$        | $52.5 \pm 0.5$ | $27.0\pm0.1$  | 0.59                        | 0.34                            |
| thrust < 0.9                                | $52.2 \pm 0.5$ | $26.8\pm0.1$  | 0.58                        | 0.33                            |
| $E_{\rm vis} < 400 { m ~GeV}$               | $51.8 \pm 0.5$ | $26.6\pm0.1$  | 0.58                        | 0.33                            |
| M(HH) > 220  GeV                            | $49.0\pm0.5$   | $25.7\pm0.1$  | 0.55                        | 0.32                            |

•  $\nu\nu$  HH: 74 % relative improvement after b-tag cut

## **Kinematic fitting**

Exploit well-known initial state in  $e^+e^-$  colliders for:

- > Improve kinematics, e.g. mass resolution
- > Hypothesis testing
- > Jet-pairing



 $\chi^2$ -function to minimise:

$$L(y) = \Delta y^{T} \mathbf{V}(y)^{-1} \Delta y + 2 \sum_{k=1}^{m} \lambda_{k} f_{k}(\mathbf{a}, y)$$

- y: set of measured parameters
- *a*: set of unmeasured parameters
- $\Delta y$ : corrections to y
- $\mathbf{V}(y)$ : covariance matrix for y
- *f<sub>k</sub>*: set of constraints expressing the fit model
- $\lambda_k$ : lagrange multipliers

## **ErrorFlow**

#### **Kinematic fitting**

Parametrize sources of uncertainties for individual jets:

 $\sigma_{E_{jet}} = \sigma_{Det} \oplus \sigma_{Conf} \oplus \sigma_{\nu} \oplus \sigma_{Clus} \oplus \sigma_{Had} \oplus \sigma_{\gamma\gamma}$ 

- $\sigma_{Det}$ : Detector resolution
- σ<sub>Conf</sub>: Particle confusion in Particle Flow Algorithm
- $\sigma_{\nu}$ : Neutrino correction



## Hypothesis testing Kinematic fitting



• Pre-fitted dijet-masses show large overlap between signal (*ZHH*) and background (*ZZH*)

#### PRELIMINARY

Calculate  $\chi^2$  for ZHH and ZZH hypotheses for both ZHH and ZZH events ZHH hypothesis:

- 4-momentum conservation
- 2  $\times$  Higgs mass constraints

ZZH hypothesis:

- 4-momentum conservation
- Higgs mass constraint + Z mass constraint

## Hypothesis testing **Kinematic fitting**

#### PRELIMINARY



• Pre-fitted dijet-masses show large overlap between signal (ZHH) and background (ZZH)



• Hypothesis testing showed good separation for low  $\chi^2$ -values of signal (*ZHH*) and background (ZZH) in previous analysis DESY-THESIS-2016-027 DESY.

## Hypothesis testing Kinematic fitting

#### PRELIMINARY



 Pre-fitted dijet-masses show large overlap between signal (ZHH) and background (ZZH)



#### DESY Julie Munch Torndal | LCWS2023 | May 16, 2023 | Page 13



paration of signal (ZHH) and background (ZZH)

Does performance in flavor tagging and kinematic separation improve by increasing  $E_{CM}$  to 550 GeV or 600 GeV?

**Open question** 

Z∕20

300

ZHH (IIbbbb)

ZZH (llqqH)



M<sub>dijet</sub> [GeV]

120

100

80

80

#### PREI IMINARY

ZHH (IIbbbb)

ZZH (IlaaH)

300

## Precision on Higgs self-coupling

| collider       | indirect- <i>h</i> | direct- <i>hh</i> |
|----------------|--------------------|-------------------|
| HL-LHC         | 100-200%           | 50%               |
| ILC250         | _                  | _                 |
| ILC500         | 58%                | 20%*              |
| ILC1000        | 52%                | 10%               |
| CLIC380        | _                  | _                 |
| CLIC1500       | _                  | 36%               |
| CLIC3000       | _                  | 9%                |
| FCC-ee 240     | _                  | _                 |
| FCC-ee 240/365 | 44%                | _                 |
| FCC-ee (4 IPs) | 27%                | _                 |
| FCC-hh         | _                  | 3.4-7.8%          |
|                |                    |                   |

[arXiv:1910.00012, arXiv:2211.11084]

**50% sensitivity:** establish that  $\lambda_{HHH} \neq 0$  at 95% CL **20% sensitivity:**  $5\sigma$  discovery of the SM  $\lambda_{HHH}$  coupling **5% sensitivity:** getting sensitive to quantum corrections to Higgs potential

## Precision on Higgs self-coupling

| collider       | indirect- <i>h</i> | direct- <i>hh</i> |
|----------------|--------------------|-------------------|
| HL-LHC         | 100-200%           | 50%               |
| ILC250         | _                  | _                 |
| ILC500         | 58%                | 20%*              |
| ILC1000        | 52%                | 10%               |
| CLIC380        | _                  | _                 |
| CLIC1500       | _                  | 36%               |
| CLIC3000       | _                  | 9%                |
| FCC-ee 240     | _                  | _                 |
| FCC-ee 240/365 | 44%                | _                 |
| FCC-ee (4 IPs) | 27%                | _                 |
| FCC-hh         | _                  | 3.4-7.8%          |

[arXiv:1910.00012, arXiv:2211.11084]

ONLY VALID FOR  $\lambda = \lambda_{SM}$ 

Higgs self-coupling precision dependent on value of  $\lambda$  itself

## Precision as a function of new physics



The two channels provide complementary information

- ZHH gives stronger constraints on  $\lambda/\lambda_{SM}>1$
- $\nu \bar{\nu} HH$  gives stronger constraints on  $\lambda/\lambda_{SM} < 1$



• LHC gives stronger constraints on  $\lambda/\lambda_{SM} < 1$ 

## Precision on Higgs self-coupling with new physics



## Precision on Higgs self-coupling with new physics



## Conclusion

- Discovery potential of Higgs self-coupling at ILC clearly demonstrated in the past
- Improvements in reconstruction tools are expected to improve the sensitivity to **better than 20%** at ILC500
- $\rightarrow$  Update to the state-of-the-art projections for ILC500 is underway!
  - Complementarity of ILC500 and ILC1000 to ensure at least 10-15% precision for any value of  $\lambda$

## Conclusion

- Discovery potential of Higgs self-coupling at ILC clearly demonstrated in the past
- Improvements in reconstruction tools are expected to improve the sensitivity to better than 20% at ILC500
- $\rightarrow$  Update to the state-of-the-art projections for ILC500 is underway!
- Complementarity of ILC500 and ILC1000 to ensure at least 10-15% precision for any value of  $\lambda$

## Thank you.