

YFS Resummation in Sherpa

Alan Price Siegen University

 \mathcal{M}

Overview

YFS Brief Recap

Automation of Perturbative Corrections

Implementation in SHERPA

Motivation

Factor 5-200 reduction of experimental error

- QED effects of 0.1% could be included in LEP error budget
- Future colliders will deliver full LEP Statistics in minutes

Yennie-Frautschi-Surra (YFS) resums all soft Logs

A. Price LCWS 2023

				1
Observable	Where from	Present (LEP)	FCC stat.	FCC sy
$M_Z [{ m MeV}]$	Z linesh. [29]	$91187.5 \pm 2.1\{0.3\}$	0.005	0.1
$\Gamma_Z [\text{MeV}]$	Z linesh. [29]	$2495.2 \pm 2.1\{0.2\}$	0.008	0.1
$R_l^Z = \Gamma_h / \Gamma_l$	$\sigma(M_Z)$ [34]	$20.767 \pm 0.025 \{0.012\}$	$6\cdot 10^{-5}$	$1 \cdot 10^{-3}$
$\sigma_{ m had}^0[{ m nb}]$	$\sigma_{ m had}^0~[29]$	$41.541 \pm 0.037 \{0.025\}$	$0.1 \cdot 10^{-3}$	$4 \cdot 10^{-3}$
N_{ν}	$\sigma(M_Z)$ [29]	$2.984 \pm 0.008 \{0.006\}$	$5 \cdot 10^{-6}$	$1 \cdot 10^{-3}$
N_{ν}	$Z\gamma~[35]$	$2.69 \pm 0.15 \{0.06\}$	$0.8\cdot10^{-3}$	$ < 10^{-3}$
$\sin^2 \theta_W^{eff} \times 10^5$	$A_{FB}^{lept.}$ [34]	$23099 \pm 53\{28\}$	0.3	0.5
$\sin^2 \theta_W^{eff} \times 10^5$	$\langle \mathcal{P}_{\tau} \rangle, A_{\mathrm{FB}}^{pol,\tau}[29]$	$23159 \pm 41\{12\}$	0.6	< 0.6
$M_W [MeV]$	ADLO [36]	$80376 \pm 33\{6\}$	0.5	0.3
$A_{FB,\mu}^{M_Z\pm 3.5{ m GeV}}$	$\frac{d\sigma}{d\cos\theta}$ [29]	$\pm 0.020\{0.001\}$	$1.0 \cdot 10^{-5}$	$0.3 \cdot 10^{-1}$

S.Jadach and M.Skrzypek, Eur. Phys. J.C 79, no.9, 756 (2019)

$$d\sigma(L, \hat{L}) = \alpha^{k} \sum_{n}^{\infty} \alpha^{n} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \hat{\sigma}_{n,i,j} L^{i} \hat{L}$$
$$\hat{L} = \log\left(\frac{Q^{2}}{E_{\gamma}^{2}}\right) \qquad L = \log\left(\frac{Q^{2}}{m_{e}^{2}}\right)$$
(YFS)

YFS a Brief Review

Yennie-Frautschi-Suura allows us to resum soft logs to infinite order

The multi-photon phasespace is treated exactly \Rightarrow Explicit Photons

$$d\sigma = \sum_{n_{\gamma}=0}^{\infty} \frac{e^{Y(\Omega)}}{n_{\gamma}!} d\Phi_{Q} \left[\prod_{i=1}^{n_{\gamma}} d\Phi_{i}^{\gamma} S(k_{i}) \Theta(k_{i}) \right]$$

 $\left| \tilde{\beta}_{0} + \sum_{j=1}^{n_{\gamma}} \frac{\tilde{\beta}_{1}(k_{j})}{S(k_{j})} + \sum_{j,k=1}^{n_{\gamma}} \frac{\tilde{\beta}_{2}(k_{j},k_{k})}{S(k_{j})S(k_{k})} + \cdots \right|,$

YFS a Brief Review

$$B(p_{i}, p_{j}) = -\frac{i}{8\pi^{3}} Z_{i} Z_{j} \theta_{i} \theta_{j} \int \frac{d^{4}k}{k^{2}} \left(\frac{2p_{i}\theta_{i} - k}{k^{2} - 2(k \cdot p_{i})\theta_{i}} + \frac{2p_{j}\theta_{j} + k}{k^{2} + 2(k \cdot p_{j})\theta_{j}} \right)^{2}$$

$$\tilde{B}(p_i, p_j, \Omega) = \frac{1}{4\pi^2} Z_i Z_j \theta_i \theta_j \int d^4 k \, \delta(k^2) \left(1 - \Theta(k, \Omega)\right) \left(\frac{p_i}{(p_i \cdot k)} - \frac{p_j}{(p_j \cdot k)}\right)^2$$

IR finite residues, will return to later

YFS Validation

More detail see <u>SciPost Phys. 13 (2022) 2, 026</u>

More detail see <u>SciPost Phys. 13 (2022) 2, 026</u>

YFS Validation

General Rule of thumb: If Sherpa can do the born e+e- process, we can also apply YFS.

All leptons must be massive

Should not be applied to colored partons

Automated for both initial and final states

Photons will appear in the event record Can be disabled

YFS Caveats

Perturbative Corrections

 $\tilde{\beta}_{0} + \sum_{j=1}^{n_{\gamma}} \frac{\tilde{\beta}_{1}(k_{j})}{S(k_{j})} + \sum_{j,k=1 \atop j < k}^{n_{\gamma}} \frac{\tilde{\beta}_{2}(k_{j},k_{k})}{S(k_{j})S(k_{k})} + \cdots,$

YFS provides a method to matching the resummation to N....NLO calculations

YFS@NLO

Perturbative Corrections

$$\left(\frac{1}{2(2\pi)^3}\right)^{n_{\gamma}} \left| \sum_{\bar{n}_{\gamma}=0}^{\infty} M_{n_{\gamma}}^{\bar{n}_{\gamma}+\frac{1}{2}n_{\gamma}} \right|^2 = \tilde{\beta}_0 \prod_{i=1}^{n_{\gamma}} \left[\tilde{S}(k_i) \right] +$$

Notation: The IR finite correction for n_{γ} and \bar{n}_{γ} is given as $\tilde{\beta}_{n_{\gamma}}^{\bar{n}_{\gamma}+n_{\gamma}}$

$$\tilde{\beta}_{n_{\gamma}} = \sum_{\bar{n}_{\gamma}=0}^{\infty} \tilde{\beta}_{n_{\gamma}}^{\bar{n}_{\gamma}+n_{\gamma}}$$

$-\sum_{i=1}^{n_{\gamma}} \left[\frac{\tilde{\beta}_{1}(k_{i})}{\tilde{S}(k_{i})} \right] \prod_{j=1}^{n_{\gamma}} \left[\tilde{S}(k_{j}) \right] + \sum_{j,k=1 \atop j < k}^{n_{\gamma}} \left[\frac{\tilde{\beta}_{2}(k_{i},k_{j})}{\tilde{S}(k_{j})} \right] \prod_{l=1}^{n_{\gamma}} \left[\tilde{S}(k_{l}) \right]$

Each $\tilde{\beta}$ is by itself **IR finite** IR divergences <u>are not</u> canceled à la Bloch-Nordsiek! Loop calculators take note

One-Loop Corrections

$\tilde{\beta}_0^1(\Phi_n) = \mathscr{V}(\Phi_n) - \sum \mathscr{D}_{ij}(\Phi_{ij})$

Full One Loop EW contribution Contains IR divergent terms Need a loop generator that can include all lepton masses! Currently only Recola can provide this Bonus: Allows Massive Reg Provided to YFS using Sherpa interface All or nothing. Cannot separate ISR/FSR

ii

One Loop Subtraction term calculated using Mass Reg

- Fully automated within YFS module
- Constructed from <u>all dipoles</u>
- Really should be limited to leptonic final states only
 - Works for massive quarks but should not be combined with QCD resummation

One Loop Example

$2 \rightarrow 4$ **Process**

15 dipoles:

1 Initial

6 Final

8 Initial-Final

```
Process generation summary:
1 process defined
 Process 1: e- e+ -> tau- tau+ mu- mu+
 Tree currents
                 = 636
                 = 10608
 Tree branches
                 = 48104
 Loop currents
Loop branches
                = 246074
 Tensor integrals = 1048
 Helicities
                  = 64
 Colourflows
                 = 1
```

IR Cancellation in action

Real Corrections $\tilde{\beta}_1^1\left(\Phi_{n+1}\right) = \mathcal{R}\left(\Phi_{n+1}\right) - \tilde{\beta}_0^0\left(\Phi_n\right)\sum \tilde{S}_{ij}(k)$

Real photon correction to born process In Sherpa, can be taken from AMEGIC or **COMIX ME generators**

A. Price LCWS 2023

Subtraction term calculate from the eikonals of all dipoles Automated within YFS

Real-Virtual Corrections

 $\tilde{\beta}_1^2\left(\Phi_{n+1}\right) = \mathscr{RV}\left(\Phi_{n+1};k\right) - \tilde{\beta}_0^1\left(\Phi_n\right)\sum \tilde{S}_{ij}(k)$

Real photon correction to born process
 Calculated with Recola

A. Price LCWS 2023

Subtraction term calculate from the eikonals of all dipoles
Automated within YFS

Real-Real Corrections

$\tilde{\beta}_2^2 \left(\Phi_{n+2} \right) = \mathcal{RR} \left(\Phi_{n+2} \right) - \sum_{ij} \tilde{\beta}_1^1 (\Phi_{n+1}; k_1) \tilde{S}_{ij}(k_2)$

 Real-Real corrections are generated with SHERPA's ME generators
 Subtraction, while complicated, also automated

A. Price LCWS 2023

 $-\sum_{n=1}^{\infty} \tilde{\beta}_{1}^{1}(\Phi_{n+1};k_{2})\tilde{S}(k_{1})$ ii

 $-\tilde{\beta}_0^0(\Phi_n)\sum \tilde{S}_{ij}(k_1)\tilde{S}_{ij}(k_2)$ ij

Virtual-Virtual Corrections

Virtual-Virtual corrections limiting factor Subtraction, while complicated, also automated

 $\tilde{\beta}_0^2(\Phi_n) = \mathscr{VV}(\Phi_n) - \sum_{ii} \mathscr{D}_{ij}(\Phi_{ij})$ ij

HZ at NLO

$e^+e^- \rightarrow$	Scheme	LO	YFS	$\mathrm{YFS}_{\mathbf{EW}}$	$\delta_{\mathbf{EW}}$
	G_{μ}	240.280(2)	213.80(6)	207.48(6)	-13.65%
HZ					
	$\alpha(M_Z^2)$	253.002(2)	223.29(7)	202.98(6)	-19.77%
	$\delta^{lpha(M_Z^2)}_{G_\mu}$	-5.03%	-4.25%	2.22%	
	G_{μ}	7.8554(4)	6.911(2)	6.666(2)	-15.13%
$H\mu^+\mu^-$					
	$\alpha(M_Z^2)$	8.4875(5)	7.401(3)	6.444(2)	-24.07%
	$\delta^{lpha(M_Z^2)}_{G_\mu}$	-7.45%	-6.62%	3.45%	
	G_{μ}	7.8376(5)	6.933(2)	6.696(2)	-14.56%
$H\tau^+\tau^-$					
	$\alpha(M_Z^2)$	8.4682(5)	7.429(3)	6.485(2)	-23.41%
	$\delta^{lpha(M_Z^2)}_{G_\mu}$	-7.45%	-6.67%	3.26%	
	G_{μ}	15.5300(1)	13.808(4)	13.501(5)	-13.06%
$H u_{\mu}ar{ u}_{\mu}$					
	$lpha(M_Z^2)$	16.7796(7)	14.804(5)	13.132(4)	-21.74%
	$\delta^{lpha(M_Z^2)}_{G_\mu}$	-7.45%	-6.73%	2.81%	
	G_{μ}	15.5300(1)	13.808(4)	13.501(5)	-13.06%
$H u_{ au} ar{ u}_{ au}$					
	$\alpha(M_Z^2)$	16.7796(7)	14.804(5)	13.132(4)	-21.74%
	$\delta^{lpha(M_Z^2)}_{G_\mu}$	-7.45%	-6.73%	2.81%	

Total cross-section for leptonically decaying ZH at 250 GeV. The results are quoted in fb

GRIFFIN: A C++ library for EW radiative corrections <u>2211.16272</u> Developed by A. Freitas and L.Chen

GRIFFIN=Gauge-Resonance-In-Four-Fermion-INteraction

A. Price LCWS 2023

Modern version of LEP era EW tools such as DIZET (used by KKMC) • Only for $f\bar{f} \to f'\bar{f}'$

NNLO accurate a Z pole

Modular nature simple to interface to Sherpa

GRIFFIN: A C++ library for EW radiative corrections <u>2211.16272</u> Developed by A. Freitas and L.Chen

M

GRIFFIN=Gauge-Resonance-In-Four-Fermion-INteraction

A. Price LCWS 2023

Framework for $f\bar{f} \to Z^*/\gamma * \to f'\bar{f}'$:

Laurent expansion about Z-pole + regular matrix element off-resonance

$$M_{ij} = M_{ij}^{\exp,s_0} + M_{ij}^{\operatorname{noexp}} - M_{ij}^{\exp,M_Z^2},$$

$$M_{ij}^{\exp,s_0} = \frac{R_{ij}}{s - s_0} + S_{ij} + (s - s_0)S'_{ij} + \dots \qquad s_0 \equiv M_Z^2 - iM_Z\Gamma_Z$$

$$M_{ij}^{\exp,s_0} = \frac{R_{ij}}{s - s_0} + S_{ij} + (s - s_0)S'_{ij} + \dots \qquad s_0 \equiv M_Z^2 - iM_Z\Gamma_Z$$
Stuart '91; Veltman '94

From **A.Freitas**

How does GRIFFIN Treat IR divergent terms?

GRIFFIN: A C++ library for EW radiative corrections <u>2211.16272</u> Developed by A. Freitas and L.Chen

M

GRIFFIN=Gauge-Resonance-In-Four-Fermion-INteraction

A. Price LCWS 2023

Framework for $f\bar{f} \to Z^*/\gamma * \to f'\bar{f}'$:

Laurent expansion about Z-pole + regular matrix element off-resonance

$$M_{ij} = M_{ij}^{\exp,s_0} + M_{ij}^{\operatorname{noexp}} - M_{ij}^{\exp,M_Z^2},$$

$$M_{ij}^{\exp,s_0} = \frac{R_{ij}}{s - s_0} + S_{ij} + (s - s_0)S'_{ij} + \dots \qquad s_0 \equiv M_Z^2 - iM_Z\Gamma_Z$$

$$M_{ij}^{\exp,s_0} = \frac{R_{ij}}{s - s_0} + S_{ij} + (s - s_0)S'_{ij} + \dots \qquad s_0 \equiv M_Z^2 - iM_Z\Gamma_Z$$
Stuart '91; Veltman '94

From **A.Freitas**

With YFS inspired Subtraction!

$$\gamma\gamma \text{ box:} \qquad B_{\text{VV}(1)} = B_{\text{VV}(1)}^{\text{tot}} - S_{\text{VV}}^{(0)} \frac{\alpha}{\pi} Q_e Q_f f_{\text{IR}}(m_{\gamma}, t, u),$$

$$\gamma Z \text{ box:} \qquad B_{\gamma Z, ij(1)} = B_{\gamma Z, ij(1)}^{\text{tot}} - \frac{R_{ij}^{(0)}}{s - s_0} \frac{\alpha}{\pi} Q_e Q_f [f_{\text{IR}}(m_{\gamma}, t, u) + \delta_G(s, t, u)],$$

$$f_{\text{IR}}(m_{\gamma}, t, u) = \ln \left(\frac{1 - c_{\theta}}{1 + c_{\theta}}\right) \left[\ln \left(\frac{2m_{\gamma}^2}{s\sqrt{1 - c_{\theta}^2}}\right) + \frac{1}{2}\right],$$

$$\delta_G(s, t, u) = -2 \ln \left(\frac{1 - c_{\theta}}{1 + c_{\theta}}\right) \ln \left(\frac{s_0 - s}{s_0}\right).$$

GRIFFIN: A C++ library for EW radiative corrections <u>2211.16272</u> Developed by A. Freitas and L.Chen

GRIFFIN=Gauge-Resonance-In-Four-Fermion-INteraction

A. Price LCWS 2023

Test Process $e^+e^- \rightarrow \mu^+\mu^-$ at 91.2GeV

Born	YFS	YFS+Recola	YFS+GRIFFIN
2114.5 pb	1463.09 pb	1494.7(8) pb	1497.5(7) pb

Ongoing validation effort

Griffin Integration time: **30s** with 8 cores Recola Integration time: **4mins** with 8 cores

Beam Polarization

- Historically has always been present in Sherpa
 - Need to be resurrected
- Validated against Madgraph with multiple
- processes
- Automatically included in YFS
- Sophisticated treatment also available for intermediate particles Hoppe, Siegert, Schönherr

Beamstrahlung

- Implementation of simple double Gaussian BES
- More sophisticated spectra handle under
- developments
- Historically present

Sherpa for Linear Colliders

P_{e^-}, P_{e^+}	0,0	-0.8,03
Madgraph	0.206 pb	0.03 pb
Sherpa	0.206 pb	0.03 pb

 $e^+e^- \rightarrow \mu^+\mu^- jj$ at 181 GeV

Conclusion

