Highlights from Workshop on S/C Detector Magnets

12. - 14.09.2022 CERN/Hybrid

Karsten Buesser LCWS2023 17.05.2023

The Workshop

Organized jointly by CERN and KEK, hosted at CERN

• 90 participants, 57 on-site, 33 remote

Main Topics

- Addressing the issue of commercially available Alstabilized superconductor technology for future detector magnets
- Assemble overview of planned detector magnets for future experiments
- Bring together physics/detector community with ulletmagnet designers and industry
- Understand status of industrial capacities and availabilities w.r.t. timelines of future experiments

- **Very large superconducting detector magnet projects!** • Time-scale for engineering design and validation effort, the construction, and the commissioning: More than 15 years each
- Production of components (conductor, coils, support structure, etc) in industry, and subsequent assembly at CERN
- Designed, constructed, commissioned, and maintained with strong support from multiple institutes:
 - ATLAS: CEA-Irfu, KEK, INFN-LASA, RAL, NIKHEF, JINR-Dubna, IHEP-Protvino, ITAM Novosibirsk, CERN
 - CMS: CEA-Irfu, ETH Zurich, INFN Genoa, University of ulletWisconsin, Fermilab, ITEP Moscow, CERN

Important lessons:

- For large superconducting detector magnets a long-term strategy is needed
- The historical importance of collaboration is evident

A. Yamamoto

Historical experiences of the ATLAS and CMS magnet projects

Superconducting Detector Magnet Workshop, 12/9/22

Detector Solenoid ChalenHybrid conductor configuration using EBW

Typical requirements for collider detectors

- Large volumes, length and radii O(few m)
- High central fields O(few T)
- As low mass as possible

Challenges

- stored energy is large O (GJ) ullet
- large forces on conductor and support ulletstructures
- high stresses

"Standard" technologies

- Al-stabilized Nb-Ti superconductors
- Cooling via L-He in cooling pipes on outer \bullet support cylinder exploiting thermoconductivity
- Coil windings and support structure • integrated by epoxy based resin
- Support vessel / cryostat provides \bullet mechanical strength and carries the mass

DESY. LCWS2023 | Karsten Buesser, 17.05.2023

Requirement: Clear bore rad. (m) Central field (T)

Design parameters: Coil inner rad. (m) - half-length (m) No. of coil layers Full thickness (m) Max. field (coil) (T) Nom. current (kA) Stored energy (GJ) Cold mass (t) E/M (kJ/kg)

High-strength Al-stabilizer w/ Ni micro-alloying and ATLAS[14] fast quench propagation w/ pure-AL strips and heater CMS[15] Self-supporting coil with no outer support cylinder BESS-Polar[16]

Snowmass-Paper, arXiv 2203.07799

Al-stabilized Conductors

Aluminum as stabilizer

- has to absorb stored energy in case of a quench ullet
 - compensate forces ullet
 - protect superconductor
- good thermal and electrical conductor
- good mechanical strength
- minimum material and weight ullet

Pure high-conductivity AI is rather soft

- High-strength pure AI: refined with metallurgical ulletmethods
- Hybrid structures using AI-Alloys

E/M ratio as figure of merit

- keep mass small (transparency) ullet
- bring stored energy up lacksquare
 - large volumes, high fields

Snowmass-Paper, arXiv 2203.07799

Future Challenges

Study for FCC-hh detector

- Main solenoid
 - 4T, 5m radius, 19m length
 - 13.8 GJ of stored energy
- Forward solenoids
 - 4T, 2.5m radius, 3.4 m length

ILD@ILC

- Main solenoid
 - 4T max, 3.6m radius, 7.3m length
 - 2.3 GJ stored energy

Fig. 4.4 Proposed FCC-hh detector base-line layout

Snowmass-Paper, arXiv 2203.07799

B [T] 4 3.5 3 2.5 2 1.5 1 0.5

1 0.

Day 1: Reports from Project Plans and Requirements

Subject / Project	Presented by
Welcome Address	J. J. Mnich, (CERN Director 1 Physics and Computing)
Opening Address	M. Mentink (CERN), T. Ogitsu (K
Program Overview	A. Yamamoto (KEK-CERN)
The Electron-Ion Collider (EIC)	R. Rajput-Ghoshal (JLab)
International Linear Collider –ILD (ILC-ILD)	K. Buesser (DESY), Y. Makida (KEK)
International Linear Collider - SiD (ILC-SiD)	T. Markiewicz (SLAC)
Compact Linear Collider (CLiC)	B. Cure (CERN)
Leptron Future Circular Collider (FCC-ee)	N. Deelen (CERN)
Hadron Future Circular Collider (FCC-hh)	M. Mentink (CERN)
Circular Electron Positron Collider (CEPC)	F. Ning (IHEP)
A Large Ion Collider Experiment 3 (ALICE-3)	W. Riegler (CERN)
Muon to Electron (Mu2e)	M. Lamm (Fermilab)
Muon Experiments in Japan	K. Sasaki and M. Yoshida (KEK)
anti <u>P</u> roton <u>AN</u> ihilation at <u>DA</u> rmstadt (PANDA)	L. Schmitt (GSI-Helmholtzzenter)
Baby International Axion Observatory (BabyIAXO)	U. Schneekloth (DESY)
MAgnetized Disc & Mirror Axion eXp. (MADMAX)	W. A. Maksoud (CEA)
Alpha Magnetic Spectrometer 100 (AMS-100)	T. Mulder (CERN), S. Schael (Rheinish Westfaeli)

A. Yamamoto

Pioneer

Now

	Experiments	Site	В	Size ID x L	Energy (MJ)	Note	Fabrication Expected
Collider	EIC-Detector	BNL	1.5~3	2.5~3.2 x 8.5	45.7	Cu only	2025 ~
	ILC-ILD	Japan	4	6.88 X 7.35	2300		2030 ~
	ILC-SiD	Japan	5	5 X 5	1400		2030 ~
	CLICdet	CERN	4	7 X 8.3	2320		2035 ~
	FCC-ee IDEA	CERN	2	4.2 X 6.0	170		2035 ~
	FCC-ee CLD	CERN	2	7.4 X 7.4	600		2035 ~
	FCC-hh	CERN	4	10 X 20	13800		2040 ~
Others	BabyAXIO	DESY	2	0.7 X 10	38	Racetrack	~2024
	AXIO	DESY	5 - 6	5 X 25	500	Toroid (Racetrack)	2024~

Future

Day 2: Reports from Industry, Experience and Prospect

Reports fr	om 10 (+3)	leading	companies	(acco
-------------------	------------	---------	-----------	-------

\bigcirc	Furukawa Electric, Japan:					
\bigcirc	European Industrial Status on superconductor mar					
\bigcirc	Wuxi Toly Electric Works Co.,Ltd., China:					
\bigcirc	Techmeta, Fr	ance: EB-				
\bigcirc	Status Report on Co-extrusion Facilities in Europe					
	Hitachi, Ltd., Japan:					
	> Toshiba Energy Systems & Solutions Corporation					
	Mitsubishi Electric corporation, Japan:					
	Bilfinger Noell, Germany:					
	ASG Superconductors, Italy:					
	SAES Group, Italy:Fa					
	Sigmaphi, Fra	ance:				
Presenting past or on-going dev						
Highlighted		- Superconductor (with Al or Cu sta				
		Coil winding and magnet accomb				

- Coil winding and magnet assembly, including cryostating,

A. Yamamoto

- Specific technology.

rding to agenda order):

Stabilized NbTi Conductor for Detector Solenoid at Furukawa ufacturing introduced by A. Ballarino (CERN) Welding of the reinforcements of the CMS Superconductor e for Detector Magnet SC Introduced by B. Cure (CERN) ent of Superconducting Magnets for Accelerators in Hitachi Superconducting detector magnets at ASG Superconductors brication of the High Order Corrector Magnets for Hi-Lumi LHCSigmaphi presentation

opment and manufacturing capacities : abilizer),

Nb/Ti Conductor Production

Established process in industry

NbTi Strand Fabrication

All Rights Reserved, Copyright© FURUKAWA ELECTRIC CO., LTD. 2022

DESY. LCWS2023 | Karsten Buesser, 17.05.2023

NbTi Conductor Fabrication

NbTi Stranded Conductor

8

Furukawa Electric

Bringing Al and Conductor together

DESY. LCWS2023 | Karsten Buesser, 17.05.2023

11

Combining NbTi conductor and Al Stabilizer

Historically, two types of machines are used for combining NbTi conductor and AI stabilizer. One is Schloemann's cable claddig press and the other is conforming (conklad) machine.

Schematic view of Schloemann's cable cladding press

K.Saito et al., J. JILM, Vol. 35, No. 5 (20

J. JILM, Vol. 35, No. 5 (2020), 297-303 in Japanese

Item	Schloemann	Conforming	
AI Source	Billet	Wire	Al-Stabilized NbTi Conduc
Machine Size	Large	Small	NbTi Conductor
Application	Clad wires	OPGW, AS	
Al-	stabilized NbTi con	Alminum wire	
Cross Section of Al	Large	Small -170mm ² (Max 300mm ²)	Schematic view of conforming machine
Length	Limited by Billet	Continuous	

Furukawa Electric

uctor

Co-Extrusion Process is Heavy Metal

Manufacturing process

Co-extrusion

- done at **Nexans, Cortaillod, CH** (same press as CMS and ATLAS BT conductor coextrusion),
- Billet-on-billet co-extrusion process ullet
- Double piston system, top and bottom, no stop,
- Atlas BT conductor die re-used, •
- Rutherford cable from Atlas BT production used ullet \sim 100-m of good leftover cable,
- 5N8 Al billets leftover from CMS production used. ullet

- 57 x 12 mm² 40 strands Strand Cu/SC~1.2 Strand Ø1.3mm
- Atlas BT conductor :

B. Curé

Status of co-extrusion in industry Companies that performed coextrusion for the LHC

detector magnets

ATLAS Conductors:

Barrel and End cap toroids:

- VAC Vacuumschmelze , Hydro aluminium (Seneffe, B) (later EAS). Facility closed in 2014.
- Alcatel Cable Suisse (later Nexans). Facility dismantled (2022). Expert left company in 2016.

No more contact or information available.

Central Solenoid: (Japan)

- Furukawa Electric Co. Ltd,
- Hitachi Cable Co. Ltd.

Ref: H. H. J. Kate, "ATLAS superconducting toroids and solenoid," in IEEE Transactions on Applied Superconductivity, vol. 15, no. 2, pp. 1267-1270, June 2005, doi: 10.1109/TASC.2005.849560.

CMS Conductor:

• Alcatel Cable Suisse (later Nexans). Facility dismantled (2022). Expert left company in 2016.

Ref: B. Blau et al., "The CMS conductor," in IEEE Transactions on Applied Superconductivity, vol. 12, no. 1, pp. 345-348, March 2002, doi: 10.1109/TASC.2002.1018416.

Currently no manufacturer in Europe, Japan or US available

- PANDA is working with institutes in Russia
 - no alternative anymore

B. Curé

ICWS2023 | Kareton Rugson 17 05 2023

Rutherford cable

	Items	Value
	Wire numbers	12×4=48
	Diameter	φ0.5~1.5mm
	Wire tension	0~40N
	The speed of rotary movement	12.5rpm
hine	The speed of production	0~10m/min

Al rods/cable releaser

Cooling system

Caterpillar tractor

building the best enterprise of magnet wires in the world

Al-stabilized superconductor

Ultrasonic cleaning

Take-up machine

Superconducting Detector Magnet Workshop, Sep. 12

Example 7 Al-stabilized superconductor for CEPC detector magnet (HTS)

building the best enterprise of magnet wires in the world

Short Al-stabilized ReBCO Stacked tape cable

- Tensile strength of aluminum rod : 60MPa
- Temperature of the cavity mold : 500°C

Problems: the core cable is not centered, and the contact time during high temperature procedure is too long

陆力电

- Short Al-stabilized ReBCO Stacked Toly Electric is participating in several pre-research projects of CEPC, mainly responsible for the fabrication of superconducting cables.
- We have found some difficulties and problems in the R&D .We are working hard to find new solutions.
- In the future, the group will increase budget for the R&D of Al-stabilized superconductor.

building the best enterprise of magnet wires in the world DUIIDING THE DEST ENTERDISE OF MADIEL WITES IN THE WOND

Al-stabilized superconductor for CEPC detector magnet (HTS)

Co-extrusion R&D Facility at CERN?

- Set up a development co-extrusion line, including cold working, either in industry (if availability) or at CERN, for:
 - R&D on aluminum-stabilized NbTi/Cu superconductors, future developments and applications of this technology.
- **Project supported by CERN & KEK for setting up this co-extrusion R&D facility.**
- Access to co-extrusion R&D facility for project and collaborations according to the priorities agreed in the HEP community;
- Sketch of a complete coextrusion line (with inputs from K. Miyashita @ KEK); • About 25~30m x 10m minimum (not including: delivery, services and storage space areas); • Infrastructure to be defined: electrical power, water, compressed air, N2 (or Ar) lines, crane.

C. Rembser, 09/2022

Co-extrusion R&D Facility at CERN?

- or at CERN, for:
 - applications of this technology.
- agreed in the HEP community;

C. Rembser, 09/2022

Alternative Soldering?

Has been done in the past

- CELLO@PETRA magnet was the first large scale s/c magnet using Al-stabilized conductor
- Conductor was soldered to Al body
 - Cu plating was required

Prototype tests also done for LHC detectors

Could be revived

- requires R&D \bullet
- Electron-beam welding might be an option •

Cello Conductor

One of the first aluminum soldered conductor 1979 for a solenoid of 1.5 T (\emptyset_i = 1.6 m, length 4 m).

One year after Morpurgo magnet

CERN workshop- 12-14/09/2022

Alternative CICC?

Cable-in-Conduit Conductors

- S/C strands in conduits
- cooled by superfluid He

Advantages

- stable direct cooling situation
- established technology, e.g., in ITER

Challenges for detector magnets

- complicated cooling system
- pre-cooling requirements ullet
- difficult to keep the material budget low •
 - But is this really an issue for LC detectors?
 - Calorimeters are inside the coil these days....

Strand bundle

Pressure relief channel

strand

L. Muzzi et al, Supercond. Sci. Techn. 28 (2015) 053002

The Future - HTS?

Only choice for

- >16T fields
- cooling temps ~30K
 - indirect cooling
 - gaseous He cooling
 - lower cryo cost

Active field of R&D

- Co-extrusion probably not the way to go here
- Soldering HTS on support could be a solution

B (T)

21

Conclusions

There is a problem with the bread-and-butter technology of particle detector magnets

- Al-stabilized conductors are an established technology, best adapted to our requirements
 - high fields, large volumes, low material budget
- Unfortunately, industry in large parts of the world has abandoned the technology
 - there are no available production sites with a proven track record (e.g. from LHC detectors)
- Russian institutes and industry are not an option anymore
- A newcomer from China (TOLY) is doing R&D for CEPC
 - an on-going R&D process
- Ideas for R&D facility at CERN

Soldering/EB-Welding might be an alternative

• was used in the past, but has not being followed up for large detector magnets since decades

CICC might be worth to look into in more detail

requires different magnet system design

HTS are attractive

• but the Al-stabilization is also a good idea for them

Need to push for R&D in labs together with industry to keep the timelines of future projects!

