Challenges to design compact gaseous RICH with π / K PID at $50 \mathrm{GeV} / \mathrm{c}$

J. Va'vra, SLAC, retired

Discussions with: A. Schartzman, V. Cairo, M. Basso, Ch. Damerell, Su Dong

Motivation for this work can be found in:
A. Albert, M.J. Bass, S.K. Bright-Thonneya, V.M. M. Cairoc, Ch. Damerell, D. Ega~na-Ugrinovic, U. Einhaus, U. Heintz, S. Homiller, S. Kawada, J. Luoh, C. Mantel, P. Meade, J. Monroy, M. Narain, R. S. Orr, J. Reichert, A. Ryd, J. Strube, Dong Su, A. G. Schwartzman, T. Tanabe, J. Tian, E. Usai, J. Va'vra, C.

Vernieri, C. C. Young, and R. Zou, ArXiv:2203.07535v2 [hep-ex] 14 Mar 2022 (note: there will be a version v3 soon describing recent RICH updates).

Can we achieve π / K PID at $50 \mathrm{GeV} / \mathrm{c}$?

C4F10: π-K separation for $L=25 \mathrm{~cm}$

- Goal of my talk is to convince you that it is possible.

Our RICH design concept is derived from CRID/Delphi RICH

Our proposed RICH:

Delphi RICH:

Beryllium mirrors with reflective coating
Low mass carbon-composite structure
Timing will be used to cut SiPM noise
SiPM detector will run at $+\mathbf{2 - 3}{ }^{\circ} \mathrm{C}$

To help Mathematica with mirror parameters choices, it is necessary to do ray tracing first.

Side view:

Front view:
Dip angles

- Spherical mirrors have radius $R=50 \mathrm{~cm}$, focal length $f=\mathbf{2 5} \mathbf{~ c m}$ nominally, except mirrors at large $\theta_{\text {dip }}$.

Final efficiency: TMAE vs. SiPMs

- Although CRID operated in a region where refraction index changed more rapidly, its wavelength acceptance was very narrow and therefore the chromatic error was smaller: $\left.\boldsymbol{\sigma}_{\boldsymbol{\theta}_{\boldsymbol{c}}}\right|_{\text {single photon }} \sim 0.4 \mathrm{mrad}(\mathrm{TMAE})$ vs. $\sim 0.62 \mathrm{mrad}(S i P M)$.
- FBK SiPM QE enhances lower wavelengths.

Npe and $\boldsymbol{\theta}_{\mathbf{c}}$ in our present design for FBK SiPM

$$
\begin{aligned}
& \mathbf{N}_{o}=\frac{\left(\frac{\alpha}{h c}\right) \int \operatorname{Eff}(E)\left[\sin \left(\theta_{c}\right)\right]^{2} d E}{\left[\sin \left(<\theta_{c}>\right)\right]^{2}}=\mathbf{2 6 0} \text { for FBK SiPM } \\
& \mathbf{N}_{\mathrm{pe}}=\mathbf{N}_{\mathbf{o}} \mathrm{L}\left[\sin <\boldsymbol{\theta}_{c}>\right]^{2}=19 \text { for } \beta=1 \text { particle }
\end{aligned}
$$

$$
<\boldsymbol{\theta}_{\boldsymbol{c}}>\text { is mean Cherenkov angle }
$$

- $\mathbf{L}=25 \mathrm{~cm} \& 1$ bar.

Created tracking program in Mathematica

$$
\mathrm{r}=125 \mathrm{~cm}
$$

Follow helix step by step. In each step:
$\left.x(i+1)=x(i)-R\left[\cos \left\{\omega(i)+s \cos \theta_{\text {dip }} / R\right)\right\}-\cos (\omega(i))\right]$ $\left.y(i+1)=y(i)+R\left[\sin \left\{\omega(i)+s * \cos \theta_{\text {dip }} / R\right)\right\}-\sin (\omega(i))\right]$ $z(i+1)=z(i)+\sin \theta_{\text {dip }}$ $\mathrm{s} \cos \theta_{\mathrm{dip}}=[\mathrm{z}(\mathrm{i}+1)-\mathrm{z}(\mathrm{i})] \mathrm{P}_{\mathrm{T}} / \mathrm{P}_{\mathrm{L}}$

$$
r=100 \mathrm{~cm}
$$

- Time $\mathbf{t}_{\mathbf{0}}$ could be a special timing layer ($\sigma_{\text {start }}=10 \mathrm{ps}$), $\mathbf{t}_{\mathbf{1}}$ is $\mathbf{F B K ~ S i P M ~ t i m e ~ (~} \sigma_{\text {stop }}=25 \mathrm{ps}$).

Time information for $\theta_{\text {dip }}=4^{\circ} \boldsymbol{\&} 20 \mathrm{GeV} / \mathrm{c} \boldsymbol{\&} \underline{B=5}$ Tesla

Smearing and focusing errors - which one dominates?

Smearing effect in large magnetic field:

Portion of circle/ellipse can be out of focus:
Ideal geometry:

Real geometry:

Ring radius measures Cherenkov angle, independently of track direction.

- Both effects make rings slightly fuzzy at certain Cherenkov angle azimuths ϕ_{c}.
- The focusing error is larger than the smearing error for $\mathrm{p}>20 \mathrm{GeV} / \mathrm{c}$ - see appendix.

Illustration of ring distortions at $\theta_{\text {dip }}=4^{0} \& 20 \mathrm{GeV} / \mathrm{c} \& B=5$ Tesla

- I rotated detector plane arbitrarily. Images are ellipses with fuzzy edges.

Cherenkov rings for $\theta_{\text {dip }}=4^{\circ} \& 20 \mathrm{GeV} / \mathrm{c} \boldsymbol{\&} \underline{B}=5$ Tesla

 (Nominal geometry)z [cm]

z [cm]

- Based on one event, one does not recognize any distortion. However, it is clear in a sample of 300 tracks. The final image is an ellipse.

Correction for ellipse distortion at $\theta_{\text {dip }}=4^{\circ}$ at $50 \mathrm{GeV} / \mathrm{c}$ with $\underline{B}=5$ Tesla

(Nominal geometry)

- Raw ring radius: CherRadius $=\operatorname{Sqrt}\left[\left(\mathrm{z}_{\text {final }}[\mathrm{i}]-\mathrm{z}_{0}\right)^{2}+\left(\mathrm{x}_{\text {final }}[\mathrm{i}]-\mathrm{x}_{0}\right)^{2}\right]\left(\mathrm{x}_{0}, \mathrm{z}_{0}-\right.$ see previous page $)$.
- Raw Cherenkov angle: $\boldsymbol{\theta}_{\mathbf{c}}$-raw $=$ CherRadius/(Focallength); (have to supply $\mathrm{x}_{0}, \mathrm{z}_{0}$, Focallength)

Results of the correction for $\theta_{\text {dip }}=4^{0} \& \underline{B}=5$ Tesla

(Focusing/smearing errors only)
Typical rms error $=\mathbf{0 . 2 5}$ mrad per single hit (includes tails)

$$
\boldsymbol{\Delta} \theta_{\mathrm{c}}=\theta_{\mathrm{c}}(\text { pion })-\theta_{\mathrm{c}}(\text { Kaon })=0.85 \mathrm{mrad}
$$

Corrected Cherenkov angle [mrad]

- Cherenkov angle distribution dramatically improves after the correction for ring distortion. At this point we consider focusing \& smearing error only.

PID for $\theta_{\text {dip }}=4^{\circ} \& 20 \mathrm{GeV} / \mathrm{c}$

Corrected Cherenkov angle for Kaons and pions (mrad)

Corrected Cherenkov angle for Kaons and pions (mrad)

- Do not see much difference in the corrected Cherenkov angle distribution.

Cherenkov rings for $\theta_{\text {dip }}=40^{\circ} \boldsymbol{\&} 50 \mathrm{GeV} / \mathrm{c} \boldsymbol{\&} \underline{B=5}$ Tesla

z [cm]

z [cm]

Data have no corrections. Fit a circle to a bunch of points without any initial guess. Fit determines x_{0}, y_{0} and radius.

- Image is a bit fuzzy in four spots around the azimuth and ellipse.

PID for $\theta_{\text {dip }}=40^{\circ}$

Typical rms error (pion) ~ 0.43 mrad per single hit

$50 \mathrm{GeV} / \mathrm{c}, 5$ Tesla

Corrected Cherenkov angle for Kaons and pions (mrad)

- Focusing \& smearing errors and ring distortion correction only.
- Larger dip angles have larger rms error.

Total error in our RICH design

Npe ~ 18 for $\theta_{\text {dip }}=4^{\circ}$, and 24 for $\theta_{\text {dip }}=40^{\circ}$, both at $50 \mathrm{GeV} / \mathrm{c}$
Errors per single photon: $\sigma_{\text {single photon }}=\left.\sqrt{ }\left(\sigma_{\text {chromatic }}{ }^{2}+\sigma_{\text {pixel }}{ }^{2}+\sigma_{\text {smearing/focusing }}{ }^{2}\right)\right|_{\text {single photon }}$
$\sigma_{\text {smearing/focusing }} \sim \mathbf{0 . 2 5 - 0 . 4} \mathrm{mrad}$; depends on momentum and dip angle
$\sigma_{\text {chromatic }}=0.0009 *(4.3-1.9) / \sqrt{ } 12 \sim \mathbf{0 . 6 2} \mathbf{~ m r a d}-$ see appendix
$\sigma_{\text {pixel }} \sim[$ pixel size $/ \sqrt{ } 12] /<\mathrm{L}_{\text {photon }}>\sim \mathbf{0 . 3 - 0 . 4} \mathrm{mrad} ;<\mathrm{L}_{\text {photon }}>$ is average photon path length (for 0.5 mm pixels size)
Common error: $\quad \sigma_{\text {tracking }} \sim 0.3 \mathrm{mrad}$ or $\mathbf{0 . 1} \mathrm{mrad}$ in case of SiD
Total error: $\sigma_{\theta} /$ track $=\sigma_{\text {single photon }} / \sqrt{ }$ Npe $\otimes \sigma_{\text {tracking }} \sim 0.35 \mathrm{mrad}$ or $\sim 0.2 \mathrm{mrad}(\mathrm{SiD})$

- PID performance: 2.5σ limit or 4.0σ limit (SiD) at $\sim 50 \mathrm{GeV} / \mathrm{c}$.

$\mathrm{L}=25 \mathrm{~cm}$

Error contribution for final error with FBK SiPMs

(Use the overall standard deviation errors for each distribution, i.e., do not use fitted results)

$\begin{gathered} \mathrm{P} \\ {[\mathrm{GeV} / \mathrm{c}]} \end{gathered}$	$\begin{gathered} \theta_{\text {dip }} \\ {[\mathrm{deg}]} \end{gathered}$	Npe per track for pions	Chromatic error per photon hit [mrad]	Chromatic error per track [mrad]	0.5 mm pixel error per photon hit [mrad]	0.5 mm pixel error per track [mrad]	Focusing/ smearing error per photon hit [mrad]	Focusing/ smearing error per track after correction [mrad]	Track error [mrad]	Total θ_{c} error per track [mrad]	PID pi/K separation in number of sigma
20	4	18	0.62	0.143	0.38	0.09	0.25	0.058	0.3	0.35	16.0
30	4	18	0.62	0.143	0.38	0.09	0.25	0.057	0.3	0.35	6.9
50	4	18	0.62	0.143	0.38	0.09	0.25	0.057	0.3	0.35	2.4
50	40	24	0.62	0.125	0.29	0.06	0.44	0.089	0.3	0.34	2.5

- After tracking error, chromatic error is the largest at present.
- In blue are parameters we can tune to influence RICH design.

$\mathrm{L}=25 \mathrm{~cm}$

Error contribution for final error with FBK SiPMs

(Use the overall standard deviation errors for each distribution, i.e., do not use fitted results)

$\begin{gathered} \mathrm{P} \\ {[\mathrm{GeV} / \mathrm{c}]} \end{gathered}$	$\begin{gathered} \theta_{\text {dip }} \\ {[\operatorname{deg}]} \end{gathered}$	Npe per track for pions	Chromatic error per photon hit [mrad]	Chromatic error per track [mrad]	0.5 mm pixel error per photon hit [mrad]	0.5 mm pixel error per track [mrad]	Focusing/ smearing error per photon hit [mrad]	Focusing/ smearing error per track after correction [mrad]	Track error [mrad]	Total θ_{c} error per track [mrad]	PID pi/K separation in number of sigma
20	4	18	0.62	0.143	0.38	0.09	0.25	0.058	0.1	0.21	26.5
30	4	18	0.62	0.143	0.38	0.09	0.25	0.057	0.1	0.21	11.4
50	4	18	0.62	0.143	0.38	0.09	0.25	0.057	0.1	0.21	4.0
50	40	24	0.62	0.125	0.29	0.06	0.44	0.089	0.1	0.18	4.6

- After tracking error, chromatic error is the largest at present.
- Now it really makes sense to reduce chromatic \& pixel errors.

Expected PID for $\theta_{\text {dip }}=40^{\circ}$ at $50 \mathrm{GeV} / \mathrm{c} \boldsymbol{\&} \underline{B}=5$ Tesla

$$
\begin{aligned}
& \sigma_{\text {tracking }} \sim 0.3 \mathrm{mrad} \\
& \sigma_{\text {tracking }} \sim 0.1 \mathrm{mrad}
\end{aligned}
$$

- Tracking error really makes a difference.
- In this plot we consider all contributions to the final error.

Conclusion

- We have demonstrated that π / K separation of 4.6σ is possible at $50 \mathrm{GeV} / \mathrm{c} \& 5 \mathrm{~T}$, if tracking direction error will be $\boldsymbol{\sim} \mathbf{0 . 1} \mathbf{~ m r a d}$.
- We find that the focusing effect error is larger than the magnetic smearing error for momenta larger than $20 \mathrm{GeV} / \mathrm{c}$.

Next:

- Introduce a realistic SiPM noise to verify that timing cuts work.

Down the road challenges:

- Optimize optical design of the entire system considering all tracks.
- MC simulation of the entire system

Appendix

FBK SiPM single photon timing resolution

Gundacker et al. "High-frequency SiPM readout advances measured coincidence time resolution limits in TOF-PET."Physics in Medicine \& Biology64.5 (2019): 055012 A. Gola, FBK Foundation Co., Italy, "Status and Perspectives of SiPM", RICH 2022, Edinburgh

Each SPAD element has edge effects:

Gola's suggestion:
Use micro-lenses to remove edge effect:

Large arrays have slightly worse timing resolution:

Gola's suggestion:
Organize array differently to improve timing

- 0.5 mm pixel SiPM can reach single photon timing resolution/pixel of $\sigma \sim 25 \mathrm{ps}$.
- $\mathrm{SPTR}=$ single photon timing resolution, $\mathrm{SPAD}=$ Single photon avalanche diode, an element of SiPM

Photon Detection Efficiency (PDE) of a single SiPM

A.N. Otte et al., NIM A 864(2017)106, Gola et al. (2019). Sensors, 19(2), 308.

- We switched from Hamamatsu SiPM PDE in the calculation to FBK SiPM PDE.

Photon detection efficiency of single SiPM:
$\mathrm{PDE}=\mathrm{FF} \times \mathrm{QE}(\lambda) \times \mathrm{P}_{\mathrm{T}}\left(\mathrm{V}_{\text {bias }}, \lambda\right)$
$\mathrm{QE}(\lambda)-\mathrm{QE}$ of Si
FF - Fill factor within one SiPM
$\mathrm{P}_{\mathrm{T}}\left(\mathrm{V}_{\text {bias }}, \lambda\right)$ - Trigger efficiency
SiPM array has additional losses due to gaps between pixel elements !
60%
50%

ben pixel

\% 0 \%

40% $\frac{\text { 휴 }}{\text { 밈 }} 40 \%$

I assume 65% :

This gives us a few photoelectrons extra !

Chromatic error: FBK vs. Hamamatsu

- FBK SiPM: $\left.\boldsymbol{\sigma}_{\boldsymbol{\theta}_{\mathbf{c}}}\right|_{\text {single photon }} \sim \frac{\mathrm{d} \boldsymbol{\theta}_{\mathrm{c}}}{\mathrm{dE}}\left(\boldsymbol{E}_{\mathbf{2}}-\boldsymbol{E}_{\mathbf{1}}\right) \frac{\mathbf{1}}{\sqrt{\mathbf{1 2}}}=\mathbf{0 . 0 0 0 9} *(\mathbf{4 . 3 - 1 . 9}) \frac{\mathbf{1}}{\sqrt{\mathbf{1 2}}}=\mathbf{0 . 6 2} \mathbf{~ m r a d}=>\left.\boldsymbol{\sigma}_{\boldsymbol{\theta}_{\mathbf{c}}}\right|_{18 \text { photons }} \sim \mathbf{0 . 1 4} \mathbf{m r a d}$

Mirror choice for FBK SiPM

The LHCb Collaboration, J. Instrum. 3, S08005 (2008).

- So far, I kept a classical $\mathbf{A l}+\mathbf{M g F}_{2}+\mathbf{C r}$ coating. This coating was used by CRID.
- N_{pe} is about the same for $\mathrm{Cr}+\mathrm{Al}+\mathrm{HfO}_{2}$ coating; perhaps tiny reduction of chromatic error.

Final efficiency: FBK vs. Hamamatsu

- $\mathrm{Al}+\mathrm{Cr}+\mathrm{HfO}_{2}$ coating helps in UV region, but it makes it worse in red region.
- It reduces chromatic error from 0.62 to 0.60 per photon hit. May consider it in future.

Timing for $\theta_{\text {dip }}=4^{0} \boldsymbol{\&} 20 \mathrm{GeV} / \mathrm{c} \boldsymbol{\&} \underline{\mathrm{B}=5 \text { Tesla }}$

z [cm]

$$
\begin{aligned}
& \sigma_{\text {start }}=10 \mathrm{ps} \\
& \sigma_{\text {stop }}=25 \mathrm{ps}
\end{aligned}
$$

$\left(t_{1}-t_{0}\right)=$

- Points near $\phi_{c}=\mathbf{1 8 0}^{\mathbf{0}}$ have small time shift of $\sim \mathbf{2 5} \mathbf{~ p s . ~}$
- Note: This time correction was not used in this analysis.

Cherenkov rings for $\theta_{\text {dip }}=4^{0}$ at $20 \mathrm{GeV} / \mathrm{c}$ with $\underline{B=5}$ Tesla

- " $\mathrm{t}_{1}-\mathrm{t}_{0}$ " timing has almost no effect on the corrected Cherenkov angle.

Cherenkov rings for $\theta_{\text {dip }}=4^{0}$ at $20 \mathrm{GeV} / \mathrm{c}$ with $\underline{B=5}$ Tesla

- ϕ_{c} depends on time ${ }^{\prime} \mathrm{t}_{1}-\mathrm{t}_{0}$ ", but corrected θ_{c} does not.

Cherenkov rings for $\theta_{\text {dip }}=4^{\circ} \& 20 \mathrm{GeV} / \mathrm{c}$ with $\underline{B=5}$ Tesla

- 3D views of Cherenkov angle including " $t_{1}-t_{0}$ " timing.

Cherenkov angle distribution for $20 \mathrm{GeV} / \mathrm{c} \& \theta_{\text {dip }}=4^{0} \& B=5$ Tesla
 Note: I started to get "help" from AI computer (https://chat.openai.com/auth/login); he knows more about Mathematica than any person I know.

rms error $=0.25$ mrad per single hit

Corrected Cherenkov angle pion [mrad]
$\mathrm{A}_{1}=323.7$
Mean $_{1}=52.7 \mathrm{mrad}$
$\sigma_{1}=0.013 \mathrm{mrad}$
$\mathrm{A}_{2}=185.6$
M85.6ean $=52.7 \mathrm{mrad}$
$\sigma_{2}=0.063 \mathrm{mrad}$
$\mathrm{A}_{3}=37.4$
$\mathrm{Mean}_{3}=52.7 \mathrm{mrad}$
$\sigma_{3}=0.38 \mathrm{mrad}$

- Fit histogram with 3 Gaussian distributions.
- σ_{3} error dominates; σ_{1} and σ_{2} errors are smaller than rms error.

Magnetic field on \& off for $20 \mathrm{GeV} / \mathrm{c} \boldsymbol{\&} \theta_{\text {dip }}=4^{0}$

rms error $=0.25 \mathrm{mrad}$ per single hit

B = $\mathbf{5}$ Tesla

Corrected Cherenkov angle pion [mrad]

Corrected Cherenkov angle pion with timing cut [mrad]

- "Magnetic field off" errors are smaller.

Smearing vs. focusing error at $20 \mathrm{GeV} / \mathrm{c} \boldsymbol{\&} \theta_{\text {dip }}=4^{\circ} \& B=5$ Tesla

Smearing error

$$
\begin{aligned}
& \sigma_{1}=0.008 \mathrm{mrad} \\
& \sigma_{2}=0.024 \mathrm{mrad} \\
& \sigma_{3}=0.09 \mathrm{mrad}
\end{aligned}
$$

(Result of subtraction of square of errors)

> Focusing error
> $\sigma_{1}=0.010 \mathrm{mrad}$
> $\sigma_{2}=0.058 \mathrm{mrad}$
> $\sigma_{3}=0.37 \mathrm{mrad}$

- We conclude that the focusing error is larger than the smearing error.

Cherenkov angle distribution for $50 \mathrm{GeV} / \mathrm{c} \boldsymbol{\&} \theta_{\text {dip }}=40^{\circ} \boldsymbol{\&} \mathbf{B}=5$ Tesla

- σ_{3} error dominates; σ_{1} and σ_{2} errors are smaller than rms error.
- Analyzing magnetic field off data, we again conclude that the focusing effect error is larger than the smearing effect error.

Magnetic field on \& off for $50 \mathrm{GeV} / \mathrm{c} \boldsymbol{\&} \theta_{\text {dip }}=40^{\circ}$

- Note: Errors are about the same for magnetic field off.
- We again conclude that the focusing effect error is larger than the smearing effect error.

Are digital SiPMs a good choice in future?

- Chip produced in a ('special') CMOS technology which allows to fabricate SPADs AND transistors on one chip

- Can have very small pixel sizes.

Possible Module Concept
Several bare chips grouped on large $\left(\sim 8 \times 8 \mathrm{~cm}^{2}\right)$ low activity substrate:

Substrate

- Combine electronics and photosensor together on one chip. Fill factor: 55\%.
- Can switch off the cell which is too noisy.
- Can daisy chain different segments.

PID using other methods

- Cherenkov imaging with our gaseous RICH is vastly superior.

Physics motivation $\pi / \mathbf{K} / \mathbf{p}$ particle identification

- General point: What is the origin of flavor? Why we have three families ?
- Higgs physics: need to test Higgs coupling to lighter quarks. Use π / K PID to separate strange-initiated jets from u/d (ArXiv: 2203.07535v2, Mar.2022)
- Flavor physics: requires excellent hadron particle identification (separation of $\pi, \mathrm{K}, \mathrm{p}$) to resolve combinatorics + separate decay modes
- SM physics: Plenty of Z, W, top produced! Measure $Z \rightarrow s \bar{s}, Z \rightarrow q q, e^{+} e^{-} \rightarrow s \bar{S}, W \rightarrow c s$, etc.

- Additional references:

- Wolfgang Altmannshofer: SSI2021 lectures on "Roles of Higgs Sector in Generation \& Flavor Problem". Lecture 1: slides, video; Lecture 2: slides, video
- Patrick Meade: SSI 2022 lectures on "Fermion Generations". Lecture 1: slides, video; Lecture 2: slides, video
- Su Dong: SLAC Snowmass Higgs WG Mar/2020: Higgs Yukawa Couplings \& Fermion Generation Puzzle

