Challenges to design compact gaseous RICH with π/K PID at 50 GeV/c

J. Va'vra, SLAC, retired

Discussions with: A. Schartzman, V. Cairo, M. Basso, Ch. Damerell, Su Dong

Motivation for this work can be found in:

A. Albert, M.J. Bass, S.K. Bright-Thonneya, V.M. M. Cairoc, Ch. Damerell, D. Ega~na-Ugrinovic, U. Einhaus, U. Heintz, S. Homiller, S. Kawada, J. Luoh, C. Mantel, P. Meade, J. Monroy, M. Narain, R. S. Orr, J. Reichert, A. Ryd, J. Strube, Dong Su, A. G. Schwartzman, T. Tanabe, J. Tian, E. Usai, J. Va'vra, C. Vernieri, C. C. Young, and R. Zou, ArXiv:2203.07535v2 [hep-ex] 14 Mar 2022 (note: there will be a version v3 soon describing recent RICH updates).

Can we achieve π/K PID at 50 GeV/c ?

• Goal of my talk is to convince you that it is possible.

Our RICH design concept is derived from CRID/Delphi RICH

Mirror Array

To help Mathematica with mirror parameters choices, it is necessary to do ray tracing first.

• Spherical mirrors have radius R = 50 cm, focal length f = 25 cm nominally, except mirrors at large θ_{dip} .

5/18/23

Final efficiency: TMAE vs. SiPMs

- Although CRID operated in a region where refraction index changed more rapidly, its wavelength acceptance was very narrow and therefore the chromatic error was smaller: $\sigma_{\theta_c}|_{\text{single photon}} \sim 0.4 \text{ mrad (TMAE)}$ vs. ~0.62 mrad (SiPM).
- FBK SiPM QE enhances lower wavelengths.

Npe and θ_c in our present design for FBK SiPM

• L = 25 cm & 1 bar.

Created tracking program in Mathematica Spherical mirror with Radius = 50 cm, r = 125 cmlocated at y = 125 cm t_{photon_1}/ **RICH** t_{photon_2} t_{track} SiPM detector in **focal plane** r = 100 cm(located at r = 100 cm) t_1 y $(t_1-t_0) = Total time measured = t_{track} + t_{photon 1} + t_{photon 2}$ X Follow helix step by step. In each step: $x(i+1) = x(i) - R[\cos\{\omega(i) + s\cos\theta_{din}/R\}] - \cos(\omega(i))]$ $y(i+1) = y(i) + R[\sin\{\omega(i) + s * \cos\theta_{din}/R\}] - \sin(\omega(i))]$ $z(i+1) = z(i) + \sin \theta_{dip}$ B $s \cos \theta_{din} = [z(i+1) - z(i)] P_T / P_L$ Ζ Details in appendix • Time t_0 could be a special timing layer ($\sigma_{start} = 10 ps$), t_1 is FBK SiPM time ($\sigma_{stop} = 25 ps$).

4/28/23

Time information for $\theta_{dip} = 4^{\circ} \& 20 \text{ GeV/c} \& \underline{B} = 5 \text{ Tesla}$

Smearing and focusing errors - which one dominates ?

- Both effects make rings slightly fuzzy at certain Cherenkov angle azimuths ϕ_c .
- The focusing error is larger than the smearing error for p > 20GeV/c see appendix.

Illustration of ring distortions at $\theta_{dip} = 4^{\circ} \& 20 \text{ GeV/c} \& B = 5 \text{ Tesla}$

• I rotated detector plane arbitrarily. Images are ellipses with fuzzy edges.

Cherenkov rings for $\theta_{dip} = 4^{\circ} \& 20 \text{ GeV/c} \& \underline{B} = 5 \text{ Tesla}$ (Nominal geometry)

• Based on one event, one does not recognize any distortion. However, it is clear in a sample of 300 tracks. The final image is an ellipse. 5/18/23

Correction for ellipse distortion at $\theta_{dip} = 4^{\circ}$ at 50 GeV/c with <u>B = 5 Tesla</u> (Nominal geometry)

- Raw ring radius: CherRadius = Sqrt[$(z_{\text{final}}[i] z_0)^2 + (x_{\text{final}}[i] x_0)^2$] (x₀, z₀ see previous page).
- **Raw Cherenkov angle:** θ_c -raw = CherRadius/(Focallength); (have to supply $x_{0,} z_{0,}$ Focallength)

Results of the correction for $\theta_{dip} = 4^{\circ} \& B = 5$ Tesla (Focusing/smearing errors only)

Typical rms error = 0.25 mrad per single hit (includes tails)

Corrected Cherenkov angle [mrad]

• Cherenkov angle distribution dramatically improves after the correction for ring distortion. At this point we consider focusing & smearing error only.

 $\Delta \theta_{c} = \theta_{c}(\text{pion}) - \theta_{c}(\text{Kaon}) = 0.85 \text{ mrad}$

PID for
$$\theta_{dip} = 4^{\circ} \& 20 \text{ GeV/c}$$

• Do not see much difference in the corrected Cherenkov angle distribution.

Cherenkov rings for $\theta_{dip} = 40^{\circ} \& 50 \text{ GeV/c} \& B = 5 \text{ Tesla}$

• Image is a bit fuzzy in four spots around the azimuth and ellipse.

PID for $\theta_{dip} = 40^{\circ}$

Typical rms error (pion) ~ 0.43 mrad per single hit

- Focusing & smearing errors and ring distortion correction only.
- Larger dip angles have larger rms error.

Total error in our RICH design

Npe ~18 for
$$\theta_{dip} = 4^{\circ}$$
, and 24 for $\theta_{dip} = 40^{\circ}$, both at 50 GeV/c
Errors per single photon: $\sigma_{single photon} = \sqrt{(\sigma_{chromatic}^2 + \sigma_{pixel}^2 + \sigma_{smearing/focusing}^2)|_{single photon}}$
 $\sigma_{smearing/focusing} \sim 0.25-0.4 \text{ mrad}; \text{ depends on momentum and dip angle}$
 $\sigma_{chromatic} = 0.0009*(4.3-1.9) /\sqrt{12} \sim 0.62 \text{ mrad} - \text{see appendix}}$
 $\sigma_{pixel} \sim [pixel size /\sqrt{12}] / < L_{photon} > \sim 0.3-0.4 \text{ mrad}; < L_{photon} > \text{ is average photon path length}}$
(for 0.5 mm pixels size)
Common error: $\sigma_{tracking} \sim 0.3 \text{ mrad or } 0.1 \text{ mrad in case of SiD}$
Total error: $\sigma_{\theta}/\text{track} = \sigma_{single photon} / \sqrt{Npe} \otimes \sigma_{tracking} \sim 0.35 \text{ mrad or } \sim 0.2 \text{ mrad} (SiD)$

• PID performance: 2.5 σ limit or 4.0 σ limit (SiD) at ~50 GeV/c.

L=25 cm

L=25 cm

Error contribution for final error with FBK SiPMs

(Use the overall standard deviation errors for each distribution, i.e., do not use fitted results)

Р	θ_{dip}	Npe	Chromatic	Chromatic	0.5mm	0.5mm	Focusing/	Focusing/	Track	Total	PID pi/K
[GeV/c]	[deg]	per	error per	error per	pixel	pixel	smearing	smearing	error	θ _c	separation
		track	photon hit	track	error	error	error per	error per	[mrad]	error	in number
		for	[mrad]	[mrad]	per	per	photon hit	track after		per	of sigma
		pions			photon	track	[mrad]	correction		track	
					hit	[mrad]		[mrad]		[mrad]	
					[mrad]						
20	4	18	0.62	0.143	0.38	0.09	0.25	0.058	0.3	0.35	16.0
30	4	18	0.62	0.143	0.38	0.09	0.25	0.057	0.3	0.35	6.9
50	4	18	0.62	0.143	0.38	0.09	0.25	0.057	0.3	0.35	2.4
50	40	24	0.62	0.125	0.29	0.06	0.44	0.089	0.3	0.34	2.5

• After tracking error, chromatic error is the largest at present.

• In blue are parameters we can tune to influence RICH design.

L=25 cm

Error contribution for final error with FBK SiPMs

(Use the overall standard deviation errors for each distribution, i.e., do not use fitted results)

Р	θ_{dip}	Npe	Chromatic	Chromatic	0.5mm	0.5mm	Focusing/	Focusing/	Track	Total	PID pi/K
[GeV/c]	[deg]	per	error per	error per	pixel	pixel	smearing	smearing	error	θ _c	separation
		track	photon hit	track	error	error	error per	error per	[mrad]	error	in number
		for	[mrad]	[mrad]	per	per	photon hit	track after		per	of sigma
		pions			photon	track	[mrad]	correction		track	
					hit	[mrad]		[mrad]		[mrad]	
					[mrad]						
20	4	18	0.62	0.143	0.38	0.09	0.25	0.058	0.1	0.21	26.5
30	4	18	0.62	0.143	0.38	0.09	0.25	0.057	0.1	0.21	11.4
50	4	18	0.62	0.143	0.38	0.09	0.25	0.057	0.1	0.21	4.0
50	40	24	0.62	0.125	0.29	0.06	0.44	0.089	0.1	0.18	4.6

- After tracking error, chromatic error is the largest at present.
- Now it really makes sense to reduce chromatic & pixel errors.

SiD?

Expected PID for $\theta_{dip} = 40^{\circ}$ at 50 GeV/c & <u>B = 5 Tesla</u>

- Tracking error really makes a difference.
- In this plot we consider all contributions to the final error.

Conclusion

- We have demonstrated that π/K separation of 4.6 σ is possible at 50 GeV/c & 5 T, if tracking direction error will be ~ 0.1 mrad.
- We find that the focusing effect error is <u>larger</u> than the magnetic smearing error for momenta larger than 20 GeV/c.

Next:

- Introduce a realistic SiPM noise to verify that timing cuts work.

Down the road challenges:

- Optimize optical design of the entire system considering all tracks.
- MC simulation of the entire system

Appendix

FBK SiPM single photon timing resolution

Gundacker et al. "High-frequency SiPM readout advances measured coincidence time resolution limits in TOF-PET."*Physics in Medicine & Biology*64.5 (2019): 055012 A. Gola, FBK Foundation Co., Italy, "Status and Perspectives of SiPM", RICH 2022, Edinburgh

• 0.5mm pixel SiPM can reach single photon timing resolution/pixel of σ ~25 ps.

• SPTR = single photon timing resolution, SPAD = Single photon avalanche diode, an element of SiPM 5/18/23 J. Vavra, LCWS SLAC workshop

Photon Detection Efficiency (PDE) of a single SiPM

A.N. Otte et al., NIM A 864(2017)106, Gola et al. (2019). Sensors, 19(2), 308.

Chromatic error: FBK vs. Hamamatsu

J.V., 4/16/2023

5/18/23

Mirror choice for FBK SiPM

The LHCb Collaboration, J. Instrum. 3, S08005 (2008).

- So far, I kept a classical Al + MgF₂ + Cr coating. This coating was used by CRID.
- N_{pe} is about the same for Cr + Al + HfO₂ coating; perhaps tiny reduction of chromatic error.

Final efficiency: FBK vs. Hamamatsu

- Al+Cr+HfO₂ coating helps in UV region, but it makes it worse in red region.
- It reduces chromatic error from 0.62 to 0.60 per photon hit. May consider it in future.

Timing for $\theta_{dip} = 4^{\circ} \& 20 \text{ GeV/c} \& \underline{B} = 5 \text{ Tesla}$

- Points near $\phi_c = 180^\circ$ have small time shift of ~25 ps.
- Note: This time correction was not used in this analysis.

Cherenkov rings for $\theta_{dip} = 4^{\circ}$ at 20 GeV/c with <u>B = 5 Tesla</u>

• " t_1 - t_0 " timing has almost no effect on the <u>corrected</u> Cherenkov angle.

Cherenkov rings for $\theta_{dip} = 4^{\circ}$ at 20 GeV/c with <u>B = 5 Tesla</u>

• ϕ_c depends on time " t_1 - t_0 ", but <u>corrected</u> θ_c does not.

4/28/23

J. Vavra, RICH group meeting

Cherenkov rings for $\theta_{dip} = 4^{\circ} \& 20 \text{ GeV/c}$ with $\underline{B} = 5 \text{ Tesla}$

• 3D views of Cherenkov angle including "t₁-t₀" timing.

Cherenkov angle distribution for 20 GeV/c & $\theta_{dip} = 4^{\circ}$ & B = 5 Tesla

Note: I started to get "help" from AI computer (https://chat.openai.com/auth/login); he knows more about Mathematica than any person I know.

- Fit histogram with 3 Gaussian distributions.
- σ_3 error dominates; σ_1 and σ_2 errors are smaller than rms error.

5/18/23

Magnetic field on & off for 20 GeV/c & $\theta_{dip} = 4^{\circ}$

rms error = 0.25 mrad per single hit

Corrected Cherenkov angle pion [mrad]

Corrected Cherenkov angle pion with timing cut [mrad]

• "Magnetic field off" errors are smaller.

Smearing vs. focusing error at 20 GeV/c & $\theta_{dip} = 4^{\circ}$ & B = 5 Tesla

Smearing error

 $\sigma_1 = 0.008 \text{ mrad}$ $\sigma_2 = 0.024 \text{ mrad}$ $\sigma_3 = 0.09 \text{ mrad}$

(Result of subtraction of square of errors)

Focusing error

 $\sigma_1 = 0.010 \text{ mrad}$ $\sigma_2 = 0.058 \text{ mrad}$ $\sigma_3 = 0.37 \text{ mrad}$

• We conclude that the focusing error is larger than the smearing error.

Cherenkov angle distribution for 50 GeV/c & $\theta_{dip} = 40^{\circ}$ & B = 5 Tesla

- σ_3 error dominates; σ_1 and σ_2 errors are smaller than rms error.
- Analyzing magnetic field off data ,we again conclude that the focusing effect error is larger than the smearing effect error.

Magnetic field on & off for 50 GeV/c & $\theta_{dip} = 40^{\circ}$

- Note: Errors are about the same for magnetic field off.
- We again conclude that the focusing effect error is larger than the smearing effect error.

Are digital SiPMs a good choice in future ?

Peter Fisher, Heidelberg

'Digital SiPM' (or 'CMOS SPADs')

 Chip produced in a ('special') CMOS technology which allows to fabricate SPADs AND transistors on one chip

Possible Module Concept

Several bare chips grouped on large (~8×8 cm²) low activity substrate:

- Can have very small pixel sizes.
- Combine electronics and photosensor together on one chip. Fill factor: 55%.
- Can switch off the cell which is too noisy.
- Can daisy chain different segments.

PID using other methods

• Cherenkov imaging with our gaseous RICH is vastly superior.

Physics motivation $\pi/K/p$ particle identification

- **General point:** What is the origin of flavor ? Why we have three families ?
- Higgs physics: need to test Higgs coupling to lighter quarks. Use π/K PID to separate strange-initiated jets from u/d (ArXiv: 2203.07535v2, Mar.2022)
- Flavor physics: requires excellent hadron particle identification (separation of π , K, p) to resolve combinatorics + separate decay modes
- SM physics: Plenty of Z, W, top produced! Measure $Z \rightarrow s\overline{s}, Z \rightarrow qq, e^+e^- \rightarrow s\overline{s}, W \rightarrow cs$, etc.

• Additional references:

- Wolfgang Altmannshofer: <u>SSI2021</u> lectures on "Roles of Higgs Sector in Generation & Flavor Problem". Lecture 1: <u>slides</u>, <u>video</u>; Lecture 2: <u>slides</u>, <u>video</u>
- Patrick Meade: <u>SSI 2022</u> lectures on "Fermion Generations". Lecture 1: <u>slides</u>, <u>video</u>; Lecture 2: <u>slides</u>, <u>video</u>
- Su Dong: SLAC Snowmass Higgs WG Mar/2020: <u>Higgs Yukawa Couplings & Fermion Generation Puzzle</u>