Challenges to design compact gaseous RICH with π/K PID at 50 GeV/c

J. Va'vra, SLAC, retired

Discussions with: A. Schartzman, V. Cairo, M. Basso, Ch. Damerell, Su Dong

Motivation for this work can be found in:

Can we achieve π/K PID at 50 GeV/c?

Goal of my talk is to convince you that it is possible.

RICH in this talk
Our RICH design concept is derived from CRID/Delphi RICH

SLD CRID:

- Gas Radiator: (C₅F₁₂/N₂ Mix)
- Mirror Array
- Drift Box
- Detector
- Liquid Radiator: (C₈F₁₄)
- C₂H₆ + TMAE

Delphi RICH:

- Gas Radiator
- Midplane
- Drift Box
- Mirror Array

Our proposed RICH:

- **C₄F₁₀ at 1 bar (boiling point -1.9°C at 1 bar)**
- Beryllium mirrors with reflective coating
- Low mass carbon-composite structure
- Timing will be used to cut SiPM noise
- SiPM detector will run at +2-3°C
To help Mathematica with mirror parameters choices, it is necessary to do ray tracing first.

- Spherical mirrors have radius \(R = 50 \text{ cm} \), focal length \(f = 25 \text{ cm} \) nominally, except mirrors at large \(\theta_{\text{dip}} \).
Although CRID operated in a region where refraction index changed more rapidly, its wavelength acceptance was very narrow and therefore the chromatic error was smaller: $\sigma_{\theta,\text{single photon}} \sim 0.4 \text{ mrad (TMAE) vs. } \sim 0.62 \text{ mrad (SiPM)}$.

- FBK SiPM QE enhances lower wavelengths.
Npe and θ_c in our present design for FBK SiPM

$$N_o = \left(\frac{\alpha}{hc}\right) \int Eff(E)[\sin(\theta_c)]^2 dE$$

$$N_{pe} = N_o L [\sin <\theta_c>]^2 = 260 \text{ for FBK SiPM}$$

$$\cos \theta_c = 1/(< n > \beta)$$

$< \theta_c>$ is mean Cherenkov angle

\bullet $L = 25 \text{ cm} \& 1 \text{ bar.}$

SiPMT

Created tracking program in Mathematica

Follow helix step by step. In each step:

\[x(i+1) = x(i) - R(\cos(\omega(i) + s \cos \theta_{EL}/R) - \cos(\omega(i))) \]
\[y(i+1) = y(i) + R(\sin(\omega(i) + s \cos \theta_{EL}/R) - \sin(\omega(i))) \]
\[z(i+1) = z(i) + \sin \theta_{EL} \]
\[s \cos \theta_{EL} = [z(i+1) - z(i)] P_{y'}/P_{L} \]

- Time \(t_0 \) could be a special timing layer (\(\sigma_{\text{start}} = 10 \text{ps} \)), \(t_1 \) is FBK SiPM time (\(\sigma_{\text{stop}} = 25 \text{ps} \)).

Details in appendix
Time information for $\theta_{\text{dip}} = 4^\circ$ & 20 GeV/c & $B = 5$ Tesla

(Pions)

Cut on “t_1-t_0” time will be used to reduce SiPM noise

$\sigma_{\text{start}} = 10$ ps
$\sigma_{\text{stop}} = 25$ ps

$t_1-t_0 = \text{Total time} = \text{Track time} + \text{Photon time 1} + \text{Photon time 2 (psec)}$
Smearing and focusing errors - which one dominates?

- Both effects make rings slightly fuzzy at certain Cherenkov angle azimuths ϕ_c.
- The focusing error is larger than the smearing error for $p > 20\text{GeV}/c$ – see appendix.
Illustration of ring distortions at $\theta_{\text{dip}} = 4^\circ$ & 20 GeV/c & B = 5 Tesla

- I rotated detector plane arbitrarily. Images are ellipses with fuzzy edges.
Cherenkov rings for $\theta_{\text{dip}} = 4^\circ$ & 20 GeV/c & $B = 5$ Tesla
(Nominal geometry)

Based on one event, one does not recognize any distortion. However, it is clear in a sample of 300 tracks. The final image is an ellipse.

Data have no corrections. Fit a circle to raw hits without any initial guess. Fit determines x_0, y_0 and radius.

- Based on one event, one does not recognize any distortion. However, it is clear in a sample of 300 tracks. The final image is an ellipse.
Correction for ellipse distortion at $\theta_{dip} = 4^\circ$ at 50 GeV/c with $B = 5$ Tesla (Nominal geometry)

- This fit is used to correct raw Cherenkov angle.

Raw ring radius: $\text{CherRadius} = \sqrt{(z_{\text{final}[i]} - z_0)^2 + (x_{\text{final}[i]} - x_0)^2}$ (x_0, z_0 - see previous page).

Raw Cherenkov angle: $\theta_c\text{-raw} = \text{CherRadius}/(\text{Focallength})$; (have to supply x_0, z_0, Focallength)
Results of the correction for $\theta_{dip} = 4^\circ$ & $B = 5$ Tesla
(Focusing/smearing errors only)

Typical rms error = 0.25 mrad per single hit (includes tails)

$\Delta \theta_c = \theta_c(\text{pion}) - \theta_c(\text{Kaon}) = 0.85$ mrad

- **Cherenkov angle distribution dramatically improves after the correction for ring distortion. At this point we consider focusing & smearing error only.**

![Graphs showing corrected Cherenkov angle distributions for Kaons and Pions at 20 GeV/c, 30 GeV/c, and 50 GeV/c.](image)
PID for $\theta_{\text{dip}} = 4^\circ$ & 20 GeV/c

- Do not see much difference in the corrected Cherenkov angle distribution.

- rms error = 0.254 mrad per single hit

2 Tesla

5 Tesla

Corrected Cherenkov angle for Kaons and pions (mrad)
Cherenkov rings for $\theta_{\text{dip}} = 40^\circ$ & 50 GeV/c & $B = 5$ Tesla

- Image is a bit fuzzy in four spots around the azimuth and ellipse.

Data have no corrections. Fit a circle to a bunch of points without any initial guess. Fit determines x_0, y_0 and radius.
PID for $\theta_{\text{dip}} = 40^\circ$

Typical rms error (pion) ~ 0.43 mrad per single hit

- Focusing & smearing errors and ring distortion correction only.
- Larger dip angles have larger rms error.
Total error in our RICH design

<table>
<thead>
<tr>
<th>Npe ~18 for $\theta_{dip} = 4^\circ$, and 24 for $\theta_{dip} = 40^\circ$, both at 50 GeV/c</th>
</tr>
</thead>
</table>

Errors per single photon: $\sigma_{\text{single photon}} = \sqrt{(\sigma_{\text{chromatic}}^2 + \sigma_{\text{pixel}}^2 + \sigma_{\text{smearing/focusing}}^2)}$\text{single photon}

$\sigma_{\text{smearing/focusing}} \sim 0.25-0.4$ mrad; depends on momentum and dip angle

$\sigma_{\text{chromatic}} = 0.0009*(4.3-1.9)/\sqrt{12} \sim 0.62$ mrad – see appendix

$\sigma_{\text{pixel}} \sim [\text{pixel size}/\sqrt{12}]/\langle L_{\text{photon}} \rangle \sim 0.3-0.4$ mrad; $\langle L_{\text{photon}} \rangle$ is average photon path length (for 0.5 mm pixels size)

Common error: $\sigma_{\text{tracking}} \sim 0.3$ mrad or 0.1 mrad in case of SiD

Total error: $\sigma_{\theta/\text{track}} = \sigma_{\text{single photon}}/\sqrt{\text{Npe}} \otimes \sigma_{\text{tracking}} \sim 0.35$ mrad or ~ 0.2 mrad (SiD)

• PID performance: 2.5 σ limit or 4.0 σ limit (SiD) at ~ 50 GeV/c.
L=25 cm

Error contribution for final error with FBK SiPMs

(Use the overall standard deviation errors for each distribution, i.e., do not use fitted results)

<table>
<thead>
<tr>
<th>P [GeV/c]</th>
<th>θ_{dip} [deg]</th>
<th>Npe per track for pions</th>
<th>Chromatic error per photon hit [mrad]</th>
<th>Chromatic error per track [mrad]</th>
<th>0.5mm pixel error per photon hit [mrad]</th>
<th>0.5mm pixel error per track [mrad]</th>
<th>Focusing/smearing error per photon hit [mrad]</th>
<th>Focusing/smearing error per track after correction [mrad]</th>
<th>Track error [mrad]</th>
<th>Total θ_c error per track [mrad]</th>
<th>PID pi/K separation in number of sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>4</td>
<td>18</td>
<td>0.62</td>
<td>0.143</td>
<td>0.38</td>
<td>0.09</td>
<td>0.25</td>
<td>0.058</td>
<td>0.3</td>
<td>0.35</td>
<td>16.0</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>18</td>
<td>0.62</td>
<td>0.143</td>
<td>0.38</td>
<td>0.09</td>
<td>0.25</td>
<td>0.057</td>
<td>0.3</td>
<td>0.35</td>
<td>6.9</td>
</tr>
<tr>
<td>50</td>
<td>4</td>
<td>18</td>
<td>0.62</td>
<td>0.143</td>
<td>0.38</td>
<td>0.09</td>
<td>0.25</td>
<td>0.057</td>
<td>0.3</td>
<td>0.35</td>
<td>2.4</td>
</tr>
<tr>
<td>50</td>
<td>40</td>
<td>24</td>
<td>0.62</td>
<td>0.125</td>
<td>0.29</td>
<td>0.06</td>
<td>0.44</td>
<td>0.089</td>
<td>0.3</td>
<td>0.34</td>
<td>2.5</td>
</tr>
</tbody>
</table>

- After tracking error, chromatic error is the largest at present.
- In blue are parameters we can tune to influence RICH design.
Error contribution for final error with FBK SiPMs

(Use the overall standard deviation errors for each distribution, i.e., do not use fitted results)

<table>
<thead>
<tr>
<th>P [GeV/c]</th>
<th>θ_{dip} [deg]</th>
<th>Npe per track for pions</th>
<th>Chromatic error per photon hit [mrad]</th>
<th>Chromatic error per track [mrad]</th>
<th>0.5mm pixel error per photon hit [mrad]</th>
<th>0.5mm pixel error per track [mrad]</th>
<th>Focusing/smearing error per photon hit [mrad]</th>
<th>Focusing/smearing error per track after correction [mrad]</th>
<th>Track error [mrad]</th>
<th>Total θ_c error per track [mrad]</th>
<th>PID pi/K separation in number of sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>4</td>
<td>18</td>
<td>0.62</td>
<td>0.143</td>
<td>0.38</td>
<td>0.09</td>
<td>0.25</td>
<td>0.058</td>
<td>0.1</td>
<td>0.21</td>
<td>26.5</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>18</td>
<td>0.62</td>
<td>0.143</td>
<td>0.38</td>
<td>0.09</td>
<td>0.25</td>
<td>0.057</td>
<td>0.1</td>
<td>0.21</td>
<td>11.4</td>
</tr>
<tr>
<td>50</td>
<td>4</td>
<td>18</td>
<td>0.62</td>
<td>0.143</td>
<td>0.38</td>
<td>0.09</td>
<td>0.25</td>
<td>0.057</td>
<td>0.1</td>
<td>0.21</td>
<td>4.0</td>
</tr>
<tr>
<td>50</td>
<td>40</td>
<td>24</td>
<td>0.62</td>
<td>0.125</td>
<td>0.29</td>
<td>0.06</td>
<td>0.44</td>
<td>0.089</td>
<td>0.1</td>
<td>0.18</td>
<td>4.6</td>
</tr>
</tbody>
</table>

- After tracking error, chromatic error is the largest at present.
- Now it really makes sense to reduce chromatic & pixel errors.

L=25 cm
Expected PID for $\theta_{\text{dip}} = 40^\circ$ at 50 GeV/c & $B = 5$ Tesla

• Tracking error really makes a difference.
• In this plot we consider all contributions to the final error.
Conclusion

- We have demonstrated that π/K separation of 4.6σ is possible at 50 GeV/c & 5 T, if tracking direction error will be ~ 0.1 mrad.

- We find that the focusing effect error is larger than the magnetic smearing error for momenta larger than 20 GeV/c.

Next:

- Introduce a realistic SiPM noise to verify that timing cuts work.

Down the road challenges:

- Optimize optical design of the entire system considering all tracks.

- MC simulation of the entire system
Appendix
Each SPAD element has edge effects:

- Gola’s suggestion: Use micro-lenses to remove edge effect.
- Large arrays have slightly worse timing resolution:

 - Gola’s suggestion: Organize array differently to improve timing

• **0.5mm pixel SiPM can reach single photon timing resolution/pixel of \(\sigma \approx 25 \text{ ps} \).**
• **SPTR = single photon timing resolution, SPAD = Single photon avalanche diode, an element of SiPM**
Photon Detection Efficiency (PDE) of a single SiPM

Photon detection efficiency of single SiPM:
\[\text{PDE} = \text{FF} \times \text{QE}(\lambda) \times P_T(V_{bias}, \lambda) \]

- \text{QE}(\lambda) – QE of Si
- \text{FF} – Fill factor within one SiPM
- \text{P}_T(V_{bias}, \lambda) – Trigger efficiency

SiPM array has additional losses due to gaps between pixel elements!
I assume 65%:

- We switched from Hamamatsu SiPM PDE in the calculation to FBK SiPM PDE.

This gives us a few photoelectrons extra!
Chromatic error: FBK vs. Hamamatsu

C4F10: Cherenkov angle for $\beta = 1$ and refraction index

- **FBK SiPM:** $\sigma_{\theta_c} |_{\text{single photon}} \sim \frac{d\theta_c}{dE} (E_2 - E_1) \frac{1}{\sqrt{12}} = 0.0009 \times (4.3 - 1.9) \frac{1}{\sqrt{12}} = 0.62 \text{ mrad} \Rightarrow \sigma_{\theta_c} |_{18 \text{ photons}} \sim 0.14 \text{ mrad}
Mirror choice for FBK SiPM

- So far, I kept a classical Al + MgF₂ + Cr coating. This coating was used by CRID.
- N_{pc} is about the same for Cr + Al + HfO₂ coating; perhaps tiny reduction of chromatic error.
Final efficiency: FBK vs. Hamamatsu

- Al+Cr+HfO$_2$ coating helps in UV region, but it makes it worse in red region.
- It reduces chromatic error from 0.62 to 0.60 per photon hit. May consider it in future.
Timing for $\theta_{\text{dip}} = 4^\circ$ & 20 GeV/c & $B = 5$ Tesla

- Points near $\phi_c = 180^\circ$ have small time shift of ~25 ps.
- Note: This time correction was not used in this analysis.
Cherenkov rings for $\theta_{\text{dip}} = 4^\circ$ at 20 GeV/c with $B = 5$ Tesla

- "t_1-t_0" timing has almost no effect on the corrected Cherenkov angle.

$\sigma_{\text{start}} = 10$ ps
$\sigma_{\text{stop}} = 25$ ps
Cherenkov rings for $\theta_{dip} = 4^\circ$ at 20 GeV/c with $B = 5$ Tesla

- f_c depends on time $t_1 - t_0$, but corrected θ_c does not.

$\sigma_{\text{start}} = 10$ ps
$\sigma_{\text{stop}} = 10$ ps

$(t_1 - t_0) = [\text{ps}]$

$\sigma_{\text{start}} = 10$ ps
$\sigma_{\text{stop}} = 25$ ps

$(t_1 - t_0) = [\text{ps}]$

$\sigma_{\text{start}} = 50$ ps
$\sigma_{\text{stop}} = 50$ ps

$\phi_{\text{azimuth}} \quad [\text{deg}]$

Corrected $\theta_c \quad [\text{deg}]$
Cherenkov rings for $\theta_{\text{dip}} = 4^\circ$ & 20 GeV/c with $B = 5$ Tesla

- 3D views of Cherenkov angle including ”t_1-t$_0$” timing.

$\sigma_{\text{start}} = 10$ ps
$\sigma_{\text{stop}} = 25$ ps
Cherenkov angle distribution for $20 \text{ GeV/c} \ & \ \theta_{\text{dip}} = 4^\circ \ & \ B = 5 \text{ Tesla}$

Note: I started to get “help” from AI computer (https://chat.openai.com/auth/login); he knows more about Mathematica than any person I know.

rms error = 0.25 mrad per single hit

- Fit histogram with 3 Gaussian distributions.
- σ_3 error dominates; σ_1 and σ_2 errors are smaller than rms error.
Magnetic field on & off for $20 \text{ GeV/c} \ & \ \theta_{\text{dip}} = 4^\circ$

rms error = 0.25 mrad per single hit

$B = 5 \text{ Tesla}$

$A_1 = 323.7$
$\text{Mean}_1 = 52.7 \text{ mrad}$
$\sigma_1 = 0.013 \text{ mrad}$
$A_2 = 185.6$
$\text{Mean}_2 = 52.7 \text{ mrad}$
$\sigma_2 = 0.063 \text{ mrad}$
$A_3 = 37.4$
$\text{Mean}_3 = 52.7 \text{ mrad}$
$\sigma_3 = 0.38 \text{ mrad}$

$B = 0.001 \text{ Tesla}$

$A_1 = 323.9$
$\text{Mean}_1 = 52.7 \text{ mrad}$
$\sigma_1 = 0.010 \text{ mrad}$
$A_2 = 205.5$
$\text{Mean}_2 = 52.7 \text{ mrad}$
$\sigma_2 = 0.058 \text{ mrad}$
$A_3 = 39.1$
$\text{Mean}_3 = 52.68 \text{ mrad}$
$\sigma_3 = 0.37 \text{ mrad}$

• “Magnetic field off” errors are smaller.
Smearing vs. focusing error at 20 GeV/c & $\theta_{dip} = 4^\circ$ & B = 5 Tesla

<table>
<thead>
<tr>
<th></th>
<th>Smearing error</th>
<th>Focusing error</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_1</td>
<td>0.008 mrad</td>
<td>0.010 mrad</td>
</tr>
<tr>
<td>σ_2</td>
<td>0.024 mrad</td>
<td>0.058 mrad</td>
</tr>
<tr>
<td>σ_3</td>
<td>0.09 mrad</td>
<td>0.37 mrad</td>
</tr>
</tbody>
</table>

(Result of subtraction of square of errors)

• We conclude that the focusing error is larger than the smearing error.
Cherenkov angle distribution for 50 GeV/c & $\theta_{\text{dip}} = 40^o$ & $B = 5$ Tesla

- σ_3 error dominates; σ_1 and σ_2 errors are smaller than rms error.
- Analyzing magnetic field off data, we again conclude that the focusing effect error is larger than the smearing effect error.

A_1 = 42.5
Mean_1 = 53.08 mrad
$\sigma_1 = 0.073$ mrad
A_2 = 61.2
Mean_2 = 53.06 mrad
$\sigma_2 = 0.158$ mrad
A_3 = 76.7
Mean_3 = 53.1 mrad
$\sigma_3 = 0.53$ mrad

rms error (pion) ~ 0.43 mrad
Magnetic field on & off for $50 \text{ GeV/c} \& \theta_{\text{dip}} = 40^\circ$

• Note: Errors are about the same for magnetic field off.
• We again conclude that the focusing effect error is larger than the smearing effect error.
Are digital SiPMs a good choice in future?

Peter Fisher, Heidelberg

- Can have very small pixel sizes.
- Combine electronics and photosensor together on one chip. Fill factor: 55%.
- Can switch off the cell which is too noisy.
- Can daisy chain different segments.
• Cerenkov imaging with our gaseous RICH is vastly superior.
Physics motivation $\pi/K/p$ particle identification

- **General point:** What is the origin of flavor? Why we have three families?
- **Higgs physics:** need to test Higgs coupling to lighter quarks. Use π/K PID to separate strange-initiated jets from u/d (ArXiv: 2203.07535v2, Mar.2022)
- **Flavor physics:** requires excellent hadron particle identification (separation of π, K, p) to resolve combinatorics + separate decay modes
- **SM physics:** Plenty of Z, W, top produced! Measure $Z \rightarrow ss\bar{s}$, $Z \rightarrow qq$, $e^+e^- \rightarrow ss\bar{s}$, $W \rightarrow cs$, etc.

- **Additional references:**
 - Wolfgang Altmannshofer: [SSI2021](#) lectures on “Roles of Higgs Sector in Generation & Flavor Problem”. Lecture 1: [slides](#), [video](#); Lecture 2: [slides](#), [video](#)
 - Patrick Meade: [SSI 2022](#) lectures on “Fermion Generations”. Lecture 1: [slides](#), [video](#); Lecture 2: [slides](#), [video](#)
 - Su Dong: SLAC Snowmass Higgs WG Mar/2020: [Higgs Yukawa Couplings & Fermion Generation Puzzle](#)