

Potential and Limits of MAPS for Large Area Sensors with Nanosecond Timing

Alexandre Habib¹, James E. Brau², Martin Breidenbach¹, Lorenzo Rota¹, Caterina Vernieri¹, Angelo Dragone¹

¹ SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

² Department of Physics, University of Oregon, Eugene, OR 97403, USA

*Correspondence: alexhab@slac.Stanford.edu

May 17, 2023

Presentation Outline

- State of the Art
- Potential of MAPS
- Limits of MAPS
 - Power
 - Timing
- SLAC Development: NAPA_p1
- Conclusion

State of the Art

Chip name	Technology	Pixel pitch [µm]	Pixel shape	Time resolution [ns]	Power Density [mW/cm²]
ALPIDE [1][2]	Tower 180 nm	28	Square	< 2000	40
FastPix ^{[3][4]}	Tower 180 nm	10 - 20	Hexagonal	0.122 – 0.135	>1500
DPTS ^[5]	Tower 65 nm	15	Square	6.3	112
Cactus ^[6]	LF 150 nm	1000	Square	0.1-0.5	145
MiniCactus ^[7]	LF 150 nm	1000	Square	0.088	300
Monolith ^{[8][9]}	IHP SiGe 130 nm	100	Hexagonal	0.077 – 0.02	40 - 2700

- [1] Gianluca Aglieri Rinella, "The ALPIDE pixel sensor chip for the upgrade of the ALICE Inner Tracking System, Nuclear Instruments and Methods in Physics Research, Volume 845,2017, https://doi.org/10.1016/j.nima.2016.05.016
- [2] M. Mager, "ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITS upgrade", Nuclear Instruments and Methods in Physics Research, Volume 824, 2016, https://doi.org/10.1016/j.nima.2015.09.057
- [3] T. Kugathasan *et al.,* "Monolithic CMOS sensors for sub-nanosecond timing", Nuclear Instruments and Methods in Physics Research, Volume 979, 2020, https://doi.org/10.1016/j.nima.2020.164461.
- [4] J. Braach et al., "Performance of the FASTPIX Sub-Nanosecond CMOS Pixel Sensor Demonstrator", *Instruments* 2022, *6*(1), 13; <u>https://doi.org/10.3390/instruments6010013</u>
- [5] G.A. Rinella et al. "Digital Pixel Test Structures implemented in a 65 nm CMOS process" https://doi.org/10.48550/arXiv.2212.08621
- [6] Y. Degerli et al 2020 JINST 15 P06011 DOI 10.1088/1748-0221/15/06/P06011
- [7] Y. Degerli *et al., "*MiniCACTUS: Sub-100 ps timing with depleted MAPS", Nuclear Instruments and Methods in Physics Research, Volume 1039, 2022, https://doi.org/10.1016/j.nima.2022.167022.
- [8] S. Anter al 2023 JINST 18 P03047DOI 10.1088/1748-0221/18/03/P03047
- [9] L. Paolozzi "A Picosecond Avalanche Detector in SiGe BiCMOS' ULITIMA Conference 2023

Presentation Outline

- State of the Art
- Potential of MAPS
- Limits of MAPS
 - Power
 - Timing
- SLAC Development: NAPA_p1
- Conclusion

Potential of MAPS

In Monolithic Active Pixel Sensors (MAPS), the sensor is integrated in the same wafer as readout electronics. This translates into many advantages:

- Small pixel (down to ~ 10 μ m) \rightarrow High Granularity
- Small sensor capacitance (few fF)→ better performance for lower power consumption than hybrid detectors
- Low material budget \rightarrow The wafer can be thinned (<100 μ m)
- Fast production \rightarrow no bump bonding necessary
- **Relatively cheap solution**, using commercial CMOS imaging technologies
- Possibility of large stitched sensor \rightarrow up to 30 cm x 10 cm

Large Area, Bent, Stitched Sensor, in the framework of R&D for ALICE ITS3

From: Magnus Mager (CERN) | bent MAPS ITS3 | C3 R&D | 17.05.2022

Example of Application : Digital E-Calorimeter for ILC

It is shown with simulations that the design of the digital MAPS applied to the ECal exceeds the physics performance required for the linear collider as specified in the ILC TDR

Presentation Outline

- State of the Art
- Potential of MAPS
- Limits of MAPS
 - Power
 - Timing
- SLAC Development: NAPA_p1
- Conclusion

Limit of MAPS on power

- Power lower limits are determined by:
 - What is **the lowest signal** to be detected? (minimum SNR)
 - How fast? (Maximum Bandwidth)
- As demonstrated in [1], for most commonly used front-ends, we can prove that:

 $\frac{Signal}{Noise} \propto \frac{Q_{in}}{C_{sensor}} \sqrt{gm} \rightarrow \frac{Signal}{Noise} \propto \sqrt[m]{Power} \text{ with } 2 \leq m \leq 4$

- For a fixed sensor thickness, the total input charge Q_{in} is governed by physics (~ 50 80 e-h/µm)
- The transconductance $gm \propto Ibias$ or $gm \propto \sqrt{I_{bias}}$ depending on the inversion mode of the input MOS
- We can conclude the sensor capacitance C_{sensor} is a key factor \rightarrow

• **Power**
$$\propto \left(\frac{SNR}{Q_{in}/C_{sensor}}\right)^m$$
 and for a constant SNR and $Q_{in} \rightarrow Power \propto (C_{sensor})^m$ with $2 \le m \le 4$

CERN developments on Tower Semiconductor 180 nm and 65 nm demonstrated that it is possible to achieve C_{sensor} a low as 2-3 fF/pixel

[1] W. Snoeys, Monolithic Pixel Detectors for High Energy Physics, Nuclear Instruments and Methods in Physics Research A 731 (2013) 125–130

Power Distribution in a Large Stitched Sensor

Power upper limits are:

9

- Power density to allow gas cooling → < 20 mW/cm²
- Voltage drop across a large matrix
 - if we're powering from 2 sides, with a pitch of 25 μ m, we would have a maximum column length of 2000 pixels (5 cm)
 - Voltage drop $\propto N_{pixels}^2$

Estimation of Voltage drop with a pixel pitch of 25 $\mu m,$ pixel current of 600 nA and pixel resistance of 300 m Ω

- Decrease pixel current
- Increase pixel pitch
- Supply over-voltage with in-pixel regulation

Presentation Outline

- State of the Art
- Potential of MAPS
- Limits of MAPS
 - Power
 - Timing
- SLAC Development: NAPA_p1
- Conclusion

Timing limits with MAPS -> Complete detection chain

 $\sigma_{Timewalk}^2 = \sigma_{Amplitude}^2 \times \left[\frac{d(TOA)}{d(V)}\right]^2$

 $\sigma^2_{Amplitude} = \sigma^2_{Landau} + \sigma^2_{charge_sharing}$

$$\sigma_{Total}^{2} = \sigma_{TOA}^{2} + \sigma_{FE}^{2} + (\sigma_{Landau}^{2} + \sigma_{charge_sharing}^{2}) \times \left[\frac{d(TOA)}{d(V)}\right]^{2} + \sigma_{TDC}^{2}$$

SLAC

Limits on Time of Arrival Jitter (σ_{TOA})

Single pixel charge [electrons] 100 Square pixel Hexagonal pixel 50

5e-10

Charge vs time for MIP incident at corner (worst case)

500

450

400

350

300

250

200

150

1e-09 Time [s]

TCAD simulation from [1] (Tower 180 nm), for MIP incident on pixel corner, pixel pitch of 10 µm,

1.5e-09

Beam tests from [2] (Tower 65 nm), time residuals after time walk correction for 10 µm (a) and 20 µm (b) pixel pitch

While the smaller pitch leads to a shorter drift distance, it also leads to more charge sharing and a larger cluster size, resulting in a deteriorated time resolution for the seed pixel.

→ For Tower Semi 65 nm we can estimate $\sigma_{T0A} < 150$ ps-rms

[1] T. Kugathasan et al., "Monolithic CMOS sensors for sub-nanosecond timing", Nuclear Instruments and Methods in Physics Research, Volume 979, 2020, https://doi.org/10.1016/j.nima.2020.164461. [2] J. Braach et al., "Performance of the FASTPIX Sub-Nanosecond CMOS Pixel Sensor Demonstrator", Instruments 2022, 6(1),

13: https://doi.org/10.3390/instruments6010013

Limits on Electronic Jitter (σ_{FE})

$$\sigma_{\rm FE} = \frac{\rm Noise}{\rm dV/dt}$$

and Noise $\propto \frac{1}{\sqrt{gm}}$ if bandwidth is fixed by a shaper, otherwise thermal noise is independent from gm and $\frac{dV}{dt} \propto gm$ and $gm \propto (Power)^{1/n}$ with $1 \le n \le 2$

 $\label{eq:second} \bullet \sigma_{FE} \propto \frac{1}{(Power)^{\frac{1}{n}}} \ \text{with} \ 1 \leq n \leq 2 \ (\text{case with no shaper})$

Limit on TimeWalk ($\sigma_{Timewalk}$)

 $\sigma_{Timewalk}^2 = \sigma_{Amplitude}^2 \times \left[\frac{d(TOA)}{d(V)}\right]^2$

$$\sigma^2_{Amplitude} = \sigma^2_{Landau} + \sigma^2_{charge_sharing}$$

- The term $\frac{d(TOA)}{d(V)}$ depends on the comparator characteristics. It can be 'ideally' zero for a constant fraction discriminator. (Not easily feasible in a small pixel)
- Most developments correct for TimeWalk offline. If not corrected, TimeWalk is typically a dominant term for time resolution

DPTS^[1] time resolution with and without time walk correction

Reference:

[1] G.A. Rinella *et al.* "Digital Pixel Test Structures implemented in a 65 nm CMOS process" <u>https://doi.org/10.48550/arXiv.2212.08621</u>

Landau Fluctuations 0.08 Thickness = 10 µm 0.06 EMStandard 0.04 PAI 0.04 Bichsel 0.02 50 100 150 Energy Loss / 3.6 eV / µm

Ref: Fuyue Wang, Su Dong, Benjamin Nachman, Maurice Garcia-Sciveres, Qi Zeng, *The impact of incorporating shell-corrections to energy loss in silicon*, Nuclear Instruments and Methods in Physics Research Section A, Volume 899, 2018

https://doi.org/10.1016/j.nima.2018.04.061

Limits on TDC (σ_{TDC})

- TDC can be made with a Ring Oscillator in pixel
- Simulations of a 15-stage Ring Oscillator show very good timing resolution < 1 ps-rms.
- The main noise will be the quantization noise = $\frac{Period}{\sqrt{12}}$
- For a $\sigma_{\text{quantization}}$ < 150 ps-rms, we need a period of 520 ps \rightarrow Ring Oscillator frequency of ~ 2 GHz
- This could become a digital challenge if the occupancy is high
- In e+e- tracker we can expect an occupancy ~ 100 hits/cm² (in a bunch train). For a pixel pitch of 25 μ m that would be 1 hit every 160 pixels, so that's a sufficiently low occupancy compatible with such a solution.

Example of Ring Oscillator based TDC

Presentation Outline

- State of the Art
- Potential of MAPS
- Limits of MAPS
 - Power
 - Timing
- SLAC Development: NAPA_p1
- Conclusion

NAPA_p1: NAnosecond Pixel for large Area sensors – Prototype 1

- Design in Tower Semiconductor 65 nm imaging technology, capitalizing on the CERN WP1.2 efforts over a decade of sensor optimization.
- The prototype design submitted with a total area 5 mm x 5 mm and a pixel of 25 μ m × 25 μ m, to serve as a baseline for sensor and pixel performance.

Pixel key elements

- Charge Sensitive Amplifier (CSA) with a synchronous reset, which can be powered down during inactive time
- A comparator with auto-zero technique, removing the need for per-pixel threshold calibration

Layout of MAPS SLAC prototype for WP1.2 shared submission

Simulation of Jitter and ENC as a Function of C_{sensor}

These simulations are with a pixel current of 600 nA → <Power density> = 115 mW/cm² x duty cycle For e+e- machines such as ILC and C³, duty cycle is expected < 1%

Simulation Results : Jitter and Time Walk

Jitter Time Walk 6.12E-06 1.4 $C_{sensor} = 2 fF$ 6.10E-06 1.2 Time of Arrival [us] 90-380'9 90-380'9 MIP/4 **Jitter** [ns-rms] MIP 1 8.0 0.6 0.4 6 ns 6.02E-06 0.2 0 6.00E-06 100 200 300 400 500 0 100 200 300 400 500 600 0 Input Charge [eletrons] I_bias [nA] From theory we expect : $\sigma_{FE} \propto \frac{1}{-1}$ with $1 \leq n \leq 2$ Time walk for MIP \rightarrow MIP/4 = 16 ns $(Power)^{\overline{n}}$ Not negligeable and must be corrected Here fitted with n = 1Jitter < 400 ps-rms with power of 720 nW/pixel and Cdet of 2 fF

Timing Limits for NAPA-p1

SLAC

Assuming time walk is fully corrected $\Rightarrow \sigma_{Total} \sim 500$ ps-rms with reasonable pixel power consumption, going lower will cost increasingly more power, not compatible with large area sensors Accounting for residual time Walk after correction, and other non-idealities, it is reasonable to aim for 1 ns-rms time resolution

Presentation Outline

- Potential of MAPS
- State of the Art
- SLAC development: NAPA_p1
- Limits of MAPS
 - Power
 - Timing
- Conclusion

Conclusion

- MAPS has great a potential to fit the future e+e- colliders requirements (vertex, tracker, calorimeter)
- It is possible to achieve very low sensor capacitance of 2-3 fF in Tower Semiconduction 65nm technology, improving power efficiency by at least 2 order of magnitude with respect to hybrid detectors.
- Improving timing requires optimization of all the elements of the detection chain. Time walk can be dominant if not corrected.
- Simulations of NAPA_p1 show that it is possible to achieve a time resolution ~ 1 ns-rms with reasonably low power consumption of 115 mW/cm² × Duty Cycle. For e+e- machines duty cycles are typically < 1%
- NAPA-p1 characterization is planned for this summer. Results should be available soon.

Thank You For Your Attention!

Backup

Signal Formation

According to Shockley-Ramo Theorem, the induced signal in a sensor electrode is:

The induced current peaks instantaneously as the charges are created in the depletion region. However, the integrated charge peak will depend on the current signal form, and thus on sensor geometry and weighting field form

[1] N. Cartiglia *et al.*, "4D tracking: present status and perspectives", Nuclear Instruments and Methods in Physics Volume 1040, 2022, https://doi.org/10.1016/j.nima.2022.167228

TDC

 $\sigma_{Total}^2 = \sigma_{TOA}^2 + \sigma_{FE}^2 + \sigma_{Timewalk}^2 + \sigma_{TDC}^2$

How low can we go on C_{sensor}?

- CERN has been working on Tower Semiconductor imaging technology (180 nm and 65 nm) for a decade, trying to optimize the sensor performance ^{[1] [2]}
- The standard imaging process offer a balloon shape depletion region around the sensor electrode. Small C_{sensor} but Epitaxial layer not fully depleted
- Adding lightly doped N-layer allows the full depletion of the epitaxial layer while maintaining low C_{sensor}
- Adding an N-gap or extra deep P-well in the pixel corners allow for faster charge collection and higher efficiency
- \rightarrow It has been proven that we can achieve high efficiency with a $C_{sensor} \sim 2 3$ fF

[1] M. van Rijnbach et al., Radiation hardness and timing performance in MALTA monolithic pixel sensors in TowerJazz 180 nm, 2022 JINST C04034
[2] M. Munker et al., Simulations of CMOS pixel sensors with a small collection electrode, improved for a faster charge collection and increased radiation tolerance, 2019 JINST 14C05013

ALPIDE

Technology	Pixel dimension	Pix shape	Rise time	Time res.	Consumption	P. Density	ENC
Tower 180 nm	29.24x 26.88 µm ²	~square	2 us	< 2 us	40 nW/pixel	40 mW/cm ²	3.9 e-rms

ALPIDE is the first MAPS to be used in a big HEP experiment.

It was designed for ALICE ITS2, with Pb-Pb collisions up to 100 kHz so it does not have fast timing constraints

- Very low power consumption
- Low sensor capacitance (2-3 fF)
- Epitaxial layer not entirely depleted. Collection by drift + diffusion
- → cannot achieve fast signal detection

References:

- Gianluca Aglieri Rinella, "The ALPIDE pixel sensor chip for the upgrade of the ALICE Inner Tracking System, Nuclear Instruments and Methods in Physics Research, Volume 845,2017, <u>https://doi.org/10.1016/j.nima.2016.05.016</u>
- M. Mager, "ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITS upgrade", Nuclear Instruments and Methods in Physics Research, Volume 824, 2016, https://doi.org/10.1016/j.nima.2015.09.057

Technology	Pixel pitch	Pix shape	Rise time	Time res.	Consumption	P. Density	ENC
Tower 180 nm	8.6 µm – 20 µm	Hexagonal	1-2 ns	~130 ps-rms	18 µA in pixel	>1500 mW/cm ²	11 e-rms

Designed for fast response

 \rightarrow Smaller pixels and large consumption are needed

References:

- T. Kugathasan *et al.,* "Monolithic CMOS sensors for sub-nanosecond timing", Nuclear Instruments and Methods in Physics Research, Volume 979, 2020, https://doi.org/10.1016/j.nima.2020.164461.
- J. Braach et al., "Performance of the FASTPIX Sub-Nanosecond CMOS Pixel Sensor Demonstrator", Instruments 2022, 6(1), 13; https://doi.org/10.3390/instruments6010013

Process Modifications

DPTS

Technology	Pixel pitch	Pix shape	Rise time	Time res.	Consumption	P. Density	ENC
Tower 65 nm	15 µm	square	≈ 1us	6.3 ns-rms	210 nA/pixel	112 mW/cm ²	2-6 e- rms

- Time over Threshold (ToT) is measured for for time walk correction (50 ns Vs 6 ns)
- Good detection efficiency up to $10^{15}~1 MeV~n_{eq}/cm^2$

Reference:

G.A. Rinella et al. "Digital Pixel Test Structures implemented in a 65 nm CMOS process" https://doi.org/10.48550/arXiv.2212.08621

Cactus

Technologie	Pixel size	Pix shape	Rise time	Time res	Consumptio n	P. Density	ENC
Lfoundry 150nmn	1x1 mm2 1x0.5 mm2	Square	1 ns	100 - 500 ps-rms	800 µA/pixel	145 mW/cm ²	300 e-rms

- Up to 300 V on 200 μ m thickness of high resistivity substrate (2 k Ω .cm)
- Input diode capacitance is more than an order of magnitude larger than expected (15 pF vs 1 pF)
- Signal is much lower than expected, probably due to parasitics. A second iteration was submitted

Reference:

Y. Degerli et al 2020 JINST 15 P06011 DOI 10.1088/1748-0221/15/06/P06011

Min-Cactus

Technology	Pixel size	Pix shape	Rise time	Time res	Power Density
Lfoundry 150 nmn	1x0.5 mm2	Rectangle	1 ns	88 ps-rms (timewalk corrected)	300 mW/cm ²

Reference:

Y. Degerli *et al., "*MiniCACTUS: Sub-100 ps timing with depleted MAPS", Nuclear Instruments and Methods in Physics Research, Volume 1039, 2022, https://doi.org/10.1016/j.nima.2022.167022.

Monolith Project- SiGe BiCMOS

Technology	Pixel pitch	Pix shape	Time res	Consumption	Power Density
SiGe 130nm IHP	100 µm	Hexagonal (65 µm side)	77 – 20 ps-rms (timewalk corrected)	0.7 – 2.3 uA/pixel	40 – 2700 mW/cm ²

- SiGe HBT very high f_T (hundreds of GHz) \rightarrow excellent performance
- High-resistivity (220 Ω ·cm) substrate, about 130 μ m thickness
- Hexagonal pixels integrated as triple wells, pixel capacitance of 80 fF
- Possibility of adding a gain layer (~60 for a MIP)

References:

- S. Zambito et al 2023 JINST 18 P03047DOI 10.1088/1748-0221/18/03/P03047
- L. Paolozzi "A Picosecond Avalanche Detector in SiGe BiCMOS' ULITIMA Conference 2023

Duty Cycle for e+e- machines

ILC Timing Structure

C³ Timing Structure

Duty Cycle = 0.48%

For NAPA_p1 <Power density> = 115 mW/cm² x duty cycle << 20 mW/cm²

- → Compatible with gas cooling if we use power pulsing
- → As for voltage drop, the pixel works up to a Vdrop of 300 mV