

# Testbeam measurements with ALICE MAPS prototype

Mirella Vassilev in collaboration with ALICE ITS3 WP3







ZH Process: Primary process at e<sup>+</sup>e<sup>-</sup> collider at 250 GeV

Drives requirement on charged track momentum and jet resolution
e<sup>+</sup> Z H X

Flavor Tagging: Higgs  $\rightarrow$  bb/cc

- Drives requirements on track impact parameter resolution
- Low mass tracker close to beam pipe with <.3% X<sub>0</sub> per layer (.15% for vertex)
- Thinned to < 75  $\mu$ m, < 5  $\mu$ m spatial resolution

| Physics driven requirements                              | Running constraints     | Sensor specifications |                       |                                |
|----------------------------------------------------------|-------------------------|-----------------------|-----------------------|--------------------------------|
| $\sigma_{s.p.} = \frac{2.8 \text{um}}{0.15\% \text{ X}}$ |                         | >                     | Small pixel           | ~16 µm                         |
|                                                          | Air cooling             | -><br>->              | low power             | 50 μm<br>50 mW/cm <sup>2</sup> |
| r of Inner most layer <u>16mm</u>                        | beam-related background | ->                    | fast readout          | ~1 µs                          |
| L                                                        | > radiation damage      | ->                    | radiation toler       | rance<br>I/ vear               |
|                                                          |                         |                       | <6.2×10 <sup>12</sup> | $n_{1}/(cm^2 vear)$            |

# **ALICE Inner Tracking System Upgrade Requirements**

- Replace inner barrel of ITS2 with 3 fully cylindrical bent MAPS layers
- Improved Tracking :
  - Inner tracking layer closer to interaction point
  - Reduced material budget (0.05 % X<sub>o</sub> per layer)
  - Spatial resolution (vertex detector: 5 µm)
  - Timing resolution ~100 ns
- Readout rates: Pb-Pb event rates of 50 kHz, p-p 200 kHz
- Maximum Radiation load ~10<sup>13</sup> 1 MeV n<sub>eq</sub>/cm<sup>2</sup> (NIEL) and 10 kGy (TID)



#### **Detector Layout**

- Inner layer 22 mm(ITS2)-> 18.0 mm(ITS3)
- 3 MAPS layers: two bent half cylinder wafer scale chips
- Carbon foam to hold layers in place

| Beampipe inner/outer radius (mm)            | 16.0/16.5         |                     |                 |  |
|---------------------------------------------|-------------------|---------------------|-----------------|--|
| IB Layer parameters                         | Layer 0           | Layer 1             | Layer 2         |  |
| Radial position (mm)                        | 18.0              | 24.0                | 30.0            |  |
| Length (sensitive area) (mm)                | 270               | 270                 | 270             |  |
| Pseudo-rapidity coverage <sup>a</sup>       | ±2.5              | ±2.3                | ±2.0            |  |
| Active area $(cm^2)$                        | 305               | 408                 | 508             |  |
| Pixel sensors dimensions (mm <sup>2</sup> ) | $280 \times 56.5$ | $280 \times 75.5$   | $280 \times 94$ |  |
| Number of pixel sensors / layer             |                   | 2                   |                 |  |
| Pixel size $(\mu m^2)$                      |                   | $O(15 \times 15)^b$ |                 |  |





#### **Reduction in Material Budget**

- Self supporting cylindrical structure
- Air cooling: low power consumption (below 20 mW/cm<sup>2</sup>)
- Integrated circuit board





#### **MAPS- Monolithic Active Pixel Sensors**

- Combine readout electronics and sensitive volume
- e<sup>-</sup>/h<sup>+</sup> pairs created by traversing particles, diffuse/drift to electrodes
- Small pixel size, large S/N, low power consumption, low material budget, low cost
- Compared to hybrid: lower radiation resistance, smaller signal, not constrained by size of bump bonds



# **DPTS: Digital Pixel Test Structure Sensor Design**

- Back bias + low dose n-type implant: enlarge depletion region at collection diode
- Fully depleted sensors: faster charge collection, improved timing





# **DPTS: Digital Pixel Test Structure**

- 32 x 32 pixels, 15 µm pitch
- 1.5 mm x 1.5 mm
- In pixel amplification and discrimination
- Asynchronous digital readout with ToT (single output)
- Pixel pulsing, monitor pixel (analog)
- Goals: Proof of concept and characterization of charge collection

#### Radiation hardness targets:

- TID (total ionizing dose) 1 Mrad
- NIEL (nonionizing energy loss) 10<sup>13</sup> n/cm<sup>2</sup>





### **DPTS** Irradiation

- TID up to 10 Mrad
- NIEL- up to 10<sup>15</sup> 1 MeV n<sub>eq</sub>/cm<sup>2</sup>
- NIEL Irradiation @ JSI Ljubljana with neutrons
- TID irradiation @ CERN X-ray Machine
  - Different irradiation rates 12-100 krad/min
  - Continuously and in intervals

| Chip serial | NIEL irradiation level |
|-------------|------------------------|
| DPTSOW22B7  | non irradiated         |
| DPTSOW22B3  | Irradiated TID 1 MRad  |
| DPTSXW22B10 | Irradiated NIEL 1E13   |
| DPTSXW22B12 | Irradiated NIEL 1E14   |
| DPTSOW22B17 | Irradiated NIEL 1E15   |
| DPTSXW22B26 | Irradiated TID 1 Mrad  |
| DPTSXW22B8  | Irradiated TID 10 Mrad |



SLAO

## **Testbeam Setup**

CERN PS 29th June-13th July 2022

- DPTS as trigger
- 5 ALPIDE reference planes
- DUT maintained at 20°C
- 10 GeV positive hadron beam



SLAC

• EUDAQ and Corryvrecken: DAQ and analysis framework



#### **Testbeam Analyses**

- Total efficiency
- In-Pixel Analyses: Efficiency, Mean Cluster Size
- Spatial Resolution
- Timing Resolution

# **Total Efficiency**

SLAC



# **Total Efficiency: Nonirradiated**



high statistic runs:

Efficiency: .911 Mean Threshold: 315 Efficiency: .951 Mean Threshold: 265

# Total Efficiency: NIEL Irradiated 10<sup>15</sup> 1 MeV n<sub>eq</sub> cm<sup>-2</sup>



Efficiency: 0.928 Mean Threshold: 160

high statistic runs:

Efficiency: 0.954 Mean Threshold: 145 Efficiency: 0.956 Mean Threshold: 135

Efficiency: 0.963 Mean Threshold: 130

#### **In Pixel Efficiency: Nonirradiated**



#### In Pixel Efficiency: NIEL Irradiated 10<sup>15</sup> 1 MeV n<sub>eq</sub> cm<sup>-2</sup> SLAC



### **Mean Cluster Size: Nonirradiated**

Cluster is a set of adjacent pixels that go over threshold



#### Mean Cluster Size : NIEL Irradiated 10<sup>15</sup> 1 MeV n<sub>eq</sub> cm<sup>-2</sup> SLAC



# **Spatial Resolution:**

- Requirement: 5 µm
- Telescope resolution: 2.4 µm
- Spatial resolution is average of row/column resolutions

SLAC

• Fit gaussian to spatial residual distributions:



# **Timing Resolution:**

- Requirement: 100ns
- 5.4 GeV electron beam
- Distribution of time residuals:  $\sigma_t = 6.3 \pm 0.1$  ns
- Readout scheme correction: time delay between even and odd columns



# **Performance Summary**

- ITS3 Radiation hardness targets:
  - TID (total ionizing dose) 1 Mrad
  - NIEL (nonionizing energy loss) 10<sup>13</sup> 1 MeV n/cm<sup>2</sup>
- Spatial resolution (vertex detector: 5 μm) : <4.33 μm</li>
- Timing resolution ~100 ns : 6.3 ns
- Working points with 99% detection efficiency at room temperature even up to 10<sup>15</sup> 1 MeV n/cm<sup>2</sup>
- More R&D needed to realize stitched sensors
- MAPs are established vertex detectors that have widespread applications, including at future colliders!

# e<sup>+</sup>e<sup>-</sup> Requirements vs. ALICE

- MAPS are viable technology in future e<sup>+</sup>e<sup>-</sup> colliders
- Similar requirements to ALICE ITS3 Upgrade

**ALICE** ALICE **Physics driven requirements** Sensor specifications **Running constraints**  $\sigma_{s.n.}$  <u>2.8um</u> 15 µm 5 µm Small pixel ~16 µm Material budget \_\_\_\_\_0.15% X<sub>0</sub>/layer <50 µm 0.05 % X<sub>o</sub>/layer Thinning to 50 µm \_\_\_\_\_ r of Inner most layer 16mm beam-related background  $20 \text{ mW} / \text{cm}^2$ low power  $50 \text{ mW/cm}^2$ fast readout ~1 us 18 mm -----> radiation damage radiation tolerance ≤3.4 Mrad/year 1 Mrad  $\leq 6.2 \times 10^{12} n_{ea} / (cm^2 year)$  $10^{13}$  1 MeV n<sub>eq</sub>/cm<sup>2</sup>

More R&D on fast readout/stitching/power consumption

