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• Detectors with high precision 😀
Smaller pixels, timing capability

• New & upgraded colliders 😀
Higher luminosity, higher energy

The future of particle physics at colliders
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• Detectors with high precision 😀⟶ more readout channels 😕
Smaller pixels, timing capability

• New & upgraded colliders 😀⟶ more hits, esp. backgrounds 😕
Higher luminosity, higher energy
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Smaller pixels, timing capability

• New & upgraded colliders 😀⟶ more hits, esp. backgrounds 😕
Higher luminosity, higher energy
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ee
Higher energy ⟶ more beam background ⟶ limitations on detector design

Solution? 
smart pixels

physics-motivated data 
reduction with AI on-ASIC
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• Smart pixels in the context of the HL-LHC
Filtering

Featurization

• Applications at linear e+e- colliders

Outline
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• Detector is an array of N pixels
100 x 25 µm pitch

100 µm thick sensor

• Pixel data sits in buffer until L1 
decision is made

• Passed to HLT at 1 MHz

Pixel readout chain: CMS at HL-LHC
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• Detector is an array of 4N pixels
50 x 12.5 µm pitch

100 µm thick sensor

• Pixel data is passed to L1 
trigger at 40 MHz

• Passed to HLT at 1 MHz

Pixel readout chain: our futuristic CMS detector
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Can we use smart pixels to transfer 
4-160x more data?

40 MHz



• State-of-the-art dataset for developing algorithms for 
implementation on-ASIC (link)
Initial conditions = fitted track params from CMS Run 2 data

• Simulated pions traversing a 21x13 array of pixels
50x12.5 µm pitch, 100 µm thickness

Located at radius of 30 mm

3.8 T magnetic field

20 time steps of 200 picoseconds (4 ns total)

Charged particle signatures in our futuristic detector
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https://zenodo.org/record/7331128


• State-of-the-art dataset for developing algorithms for 
implementation on-ASIC (link)
Initial conditions = fitted track params from CMS Run 2 data

• Simulated pions traversing a 21x13 array of pixels
50x12.5 µm pitch, 100 µm thickness

Located at radius of 30 mm

3.8 T magnetic field

20 time steps of 200 picoseconds (4 ns total)

• For e+e- :
Simulation with electrons needed

Is signal collected over 4 ns fast enough?

Charged particle signatures in our futuristic detector
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• Select and read out clusters 
created by particles with high 
transverse momentum (pT)

• More than 95% of CMS pixel 
hits have pT < 2 GeV
Potential for large reduction at 
HL-LHC

Data filtering on-ASIC
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• pT ~ radius of curvature, correlated with 
Magnetic field strength (B)

Position of the hit in the bending direction (y0)

Angle in the bending plane of B (β)

Sign of the charge

Classification based on particle pT
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β

y0

• Train a classifier to select clusters with                
pT > 200 MeV 
Input data: cluster image projected onto y-axis

• Three classes: 
Low pT negative charge, low pT positive charge, high pT



• Full precision network: 
Projected cluster size only (1) 

Projected cluster shape (2) (selected as baseline)

Timing information (3) promises 5-10% efficiency gain 

Performance of the DNN pT filter
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How much do 
we discard?

How much of 
what we keep 
is pT < 2 GeV?

How much of 
what we discard 
is pT > 2 GeV?

Model 4: Spiking neural network is a work in progress



Implementation in 28nm CMOS
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• Network quantization
Input charge distribution binned for 2 bit ADC

Quantization-aware training in Tensorflow/Keras

translates model into hardware specification for high-level synthesis (HLS)

Siemens Catapult HLS to generate RTL implementation

• Fully reprogrammable NN weights

Floorplan with analog pixels with power and bias grid Red = classifier algorithm



Data featurization on-ASIC
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• Train an algorithm to extract 
properties of the incident particle 
Read this out instead of raw data

• A form of compression
Technically lossy, but fully preserves 
physics information

Size of readout depends on number 
of clusters, but not on cluster size

x, y, …

• Mixture density network gives us both central value and meaningful uncertainty 
on the measured quantity
Predicts the parameters of a likelihood distribution

https://publications.aston.ac.uk/id/eprint/373/1/NCRG_94_004.pdf


• Gaussian loss function (predict µ, σ)
• Simple networks very performant

Single layer NN, 106 training clusters

Quantization aware training with QKeras

• Training input = cluster shape projected onto 
relevant axis 
Negligible correlation between x, y 

Predicting hit position & uncertainty
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Sensor x ⟶

y 
⟶



• Top row: y, bottom row: x
• Left column: residuals
• Right column: uncertainty

Low precision weights ⟶ larger 
uncertainty

• Models shown use cluster 
shape input only
Addition of timing information 
improves performance

Predicting hit position & uncertainty
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• Beta distribution loss function (params a, b)
Mode and variance are functions of a, b

• More complex networks compared to x, y
3 NN layers, 106 training clusters

• Training input = cluster shape 
Full 2D image (orange) and projected (blue)

Negligible correlation between ɑ, β

• Predict absolute value of cotangent 
Approximately linear in projected cluster size

Sign of the angle requires timing information

Predicting angles & uncertainty
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Predicting angles & uncertainty
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• Single-pixel clusters impact 
prediction at low cot ɑ 
Pixel pitch is “large” in x

Best guess = center of the pixel ⟶ some 
large residuals

• Dataset is only populated to ±30°
from normal in β
Expect to reduce bias by expanding dataset

• Studies ongoing
Convolutional NN ⟶ less area

Quantization to be explored

~3°

~12°

Normal incidence



Angles & their uncertainties
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• More complex final states ⟶ more hits ⟶ more hit combinations for track seeding
Computationally very expensive and slow 😕



Angles & their uncertainties
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• More complex final states ⟶ more hits ⟶ more hit combinations for track seeding
Computationally very expensive and slow 😕

• Predicted angle + uncertainty gives a 
cone where you can expect a hit in the 
next layer, reducing combinatorics
Small uncertainty ⟶ small cone

No timing ⟶ |ɑ|, |β| only ⟶ 2 cones

• Fast tracking and vertexing
Very valuable for hh, e+e- and µµ !

At HL-LHC: makes pixel trigger feasible?



• Reject hits from beam backgrounds corresponding to 
spiraling e+e- from e.g. incoherent pair production 
Train a classifier to remove hits from tracks with low pT, small θ

e+e- collisions: on-ASIC filtering
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Big buffer (integrated over bunch train)

…



• Read out incident particle properties and uncertainties instead of pixel array
• Size of stored pixel data is independent of geometry

Decouples buffer size from choice of pixel pitch, sensor thickness

e+e- collisions: on-ASIC featurization
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Big buffer (integrated over bunch train)

…

• Good use case for MAPS with 3D 
integration
MAPS ⟶ small pixels, thin sensors

MAPS shift information to the periphery

Additional layer on top would provide 
area to do the NN regression



• Critical design constraints to keep beam backgrounds 
out of acceptance could be relaxed
Innermost radius of vertex detector (right), θ acceptance, pixel pitch

• Reprogramming NN weights for different √s ensures 
the most effective filtering
Adjust NN weights to change pT and θ thresholds or compensate for 
radiation damage effects

e+e- collisions with on-ASIC data reduction
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• Possibility to reduce thermal load (material budget) by reading out less data
Spiking neural networks are especially energy-efficient

• Can significantly increase the rate
Could consider a low-energy machine that might require a trigger



• AI on-chip has great potential to reduce data rates to manageable levels 
First implementation of the pT filtering looks very promising!

Feature extraction for x, y, ɑ, β underway

• Plan to leverage emerging technologies to improve energy efficiency, accuracy
• Co-design with focus on preserving information that is useful for physics

For e+e- this reaches all the way down to accelerator level

Smart pixels would provide more flexibility in experimental design at linear e+e- machines

Smart pixels: summary
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The smart pixels team

05/17/23 Jennet Dickinson | Smart pixels25



Backup material
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• Highest data rates in HEP!
Only read out for triggered events
Measure charged particle tracks and vertices

• And getting higher…
Next generation detectors promise better resolution 
(position & angle), precision timing

More information, but also more data

Pixel detectors at the LHC
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2207.07958
What would we gain if we could analyze it all? Some aspirational targets: 
• Higgs self-coupling : 5x increase in the low-mhh spectrum from b-jet triggers.

• WIMP dark matter : 50x rate for low-pT / disappearing tracks / long-lived particles.
• New capabilities for high-rate, soft objects : e.g. dark sector BSM, B-physics, and more!

https://arxiv.org/abs/2207.07958


• Positive charge only

Incident angle, pT, and y0
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• Combined with other sensor layers for 3D tracking

Track diagrams
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Track diagrams: angles

05/17/23 Jennet Dickinson | Smart pixels31

CMS x ⟶
C

M
S 

y 
⟶

CMS z ⟶

C
M

S 
y 
⟶

βɑ



Track diagrams: angles
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Track diagrams: angles (2)
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