Smart pixels with data reduction at source: possible applications for linear e^+e^- colliders

Jennet Dickinson and Lindsey Gray
International Workshop on Future Linear Colliders
May 17, 2023
The future of particle physics at colliders

• Detectors with high precision 😊
 Smaller pixels, timing capability
• New & upgraded colliders 😊
 Higher luminosity, higher energy
The future of particle physics at colliders

- Detectors with high precision 😊 → more readout channels 😞
 Smaller pixels, timing capability
- New & upgraded colliders 😊 → more hits, esp. backgrounds 😞
 Higher luminosity, higher energy

Higher luminosity → pileup → limitations on trigger & amount of recorded data

Solution!
- smart pixels
- physics-motivated data reduction with AI on-ASIC
The future of particle physics at colliders

- Detectors with high precision 😊 → more readout channels 😞
 Smaller pixels, timing capability
- New & upgraded colliders 😊 → more hits, esp. backgrounds 😞
 Higher luminosity, higher energy

Higher energy → more beam background → limitations on detector design

Solution?

smart pixels

physics-motivated data reduction with AI on-ASIC
Outline

• Smart pixels in the context of the HL-LHC
 Filtering
 Featurization
• Applications at linear e^+e^- colliders
Pixel readout chain: CMS at HL-LHC

- Detector is an array of N pixels
 - $100 \times 25 \, \mu \text{m}$ pitch
 - $100 \, \mu \text{m}$ thick sensor
- Pixel data sits in buffer until L1 decision is made
- Passed to HLT at 1 MHz
Pixel readout chain: our futuristic CMS detector

- Detector is an array of \(4N \) pixels
 - \(50 \times 12.5 \, \mu m \) pitch
 - \(100 \, \mu m \) thick sensor
- Pixel data is passed to L1 trigger at 40 MHz
- Passed to HLT at 1 MHz

Can we use smart pixels to transfer 4-160x more data?
Charged particle signatures in our futuristic detector

- State-of-the-art dataset for developing algorithms for implementation on-ASIC ([link](#))

 Initial conditions = fitted track params from CMS Run 2 data

- Simulated pions traversing a 21x13 array of pixels

 50x12.5 µm pitch, 100 µm thickness

 Located at radius of 30 mm

 3.8 T magnetic field

 20 time steps of 200 picoseconds (4 ns total)
Charged particle signatures in our futuristic detector

- State-of-the-art dataset for developing algorithms for implementation on-ASIC ([link](#))

 Initial conditions = fitted track params from CMS Run 2 data

- Simulated pions traversing a 21x13 array of pixels
 50x12.5 μm pitch, 100 μm thickness
 Located at radius of 30 mm
 3.8 T magnetic field
 20 time steps of 200 picoseconds (4 ns total)

- For e^+e^-:
 Simulation with electrons needed
 Is signal collected over 4 ns fast enough?
Data filtering on-ASIC

- Select and read out clusters created by particles with high transverse momentum (p_T)
- More than 95% of CMS pixel hits have $p_T < 2$ GeV

 Potential for large reduction at HL-LHC
Classification based on particle p_T

- $p_T \sim$ radius of curvature, correlated with Magnetic field strength (B)
- Position of the hit in the bending direction (y_0)
- Angle in the bending plane of B (β)
- Sign of the charge

- Train a classifier to select clusters with $p_T > 200$ MeV
 - Input data: cluster image projected onto y-axis

- Three classes:
 - p_T negative charge, p_T positive charge, high p_T
Performance of the DNN p_T filter

- Full precision network:
 - Projected cluster size only (1)
 - Projected cluster shape (2) (selected as baseline)
 - Timing information (3) promises 5-10% efficiency gain

<table>
<thead>
<tr>
<th>Model</th>
<th>Data Reduction</th>
<th>False Positives</th>
<th>False Negatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>77.9 %</td>
<td>13.4 %</td>
<td>20.7 %</td>
</tr>
<tr>
<td>Model 2</td>
<td>65.8 %</td>
<td>10.9 %</td>
<td>13.4 %</td>
</tr>
<tr>
<td>Model 3</td>
<td>57.4 %</td>
<td>8.9 %</td>
<td>8.1 %</td>
</tr>
</tbody>
</table>

Model 4: Spiking neural network is a work in progress
Implementation in 28nm CMOS

• Network quantization
 Input charge distribution binned for 2 bit ADC
 Quantization-aware training in Tensorflow/Keras
 \texttt{hls4ml} translates model into hardware specification for high-level synthesis (HLS)
 Siemens Catapult HLS to generate RTL implementation

• Fully reprogrammable NN weights

<table>
<thead>
<tr>
<th>ADC output</th>
<th>Charge interval [e^-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>< 400</td>
</tr>
<tr>
<td>01</td>
<td>400 – 1600</td>
</tr>
<tr>
<td>10</td>
<td>1600 – 2400</td>
</tr>
<tr>
<td>11</td>
<td>> 2400</td>
</tr>
</tbody>
</table>

Floorplan with analog pixels with power and bias grid
Red = classifier algorithm
Data featurization on-ASIC

- Train an algorithm to extract properties of the incident particle
 - Read this out instead of raw data
- A form of compression
 - Technically lossy, but fully preserves physics information
 - Size of readout depends on number of clusters, but not on cluster size
- Mixture density network gives us both central value and meaningful uncertainty on the measured quantity
 - Predicts the parameters of a likelihood distribution
Predicting hit position & uncertainty

- Gaussian loss function (predict μ, σ)
- Simple networks very performant
 - Single layer NN, 10^6 training clusters
 - Quantization aware training with QKeras
- Training input = cluster shape projected onto relevant axis
 - Negligible correlation between x, y
Predicting hit position & uncertainty

- Top row: y, bottom row: x
- Left column: residuals
- Right column: uncertainty
 - Low precision weights \rightarrow larger uncertainty
- Models shown use cluster shape input only
 - Addition of timing information improves performance
Predicting angles & uncertainty

- Beta distribution loss function (params a, b)

 Mode and variance are functions of a, b

- More complex networks compared to x, y

 3 NN layers, 10^6 training clusters

- Training input = cluster shape

 Full 2D image (orange) and projected (blue)

 Negligible correlation between α, β

- Predict absolute value of cotangent

 Approximately linear in projected cluster size

 Sign of the angle requires timing information
Predicting angles & uncertainty

- Single-pixel clusters impact prediction at low \(\cot \alpha \)

 Pixel pitch is “large” in \(x \)

 Best guess = center of the pixel \(\rightarrow \) some large residuals

- Dataset is only populated to \(\pm 30^\circ \) from normal in \(\beta \)

 Expect to reduce bias by expanding dataset

- Studies ongoing

 Convolutional NN \(\rightarrow \) less area

 Quantization to be explored

\[\text{Normal incidence} \]
Angles & their uncertainties

- More complex final states → more hits → more hit combinations for track seeding
 Computationally very expensive and slow 😞
Angles & their uncertainties

- More complex final states \rightarrow more hits \rightarrow more hit combinations for track seeding

 Computationally very expensive and slow 😞

- Predicted angle + uncertainty gives a cone where you can expect a hit in the next layer, reducing combinatorics

 Small uncertainty \rightarrow small cone

 No timing \rightarrow $|\alpha|$, $|\beta|$ only \rightarrow 2 cones

- Fast tracking and vertexing

 Very valuable for hh, e+e- and $\mu\mu$!

 At HL-LHC: makes pixel trigger feasible?
e^+e^- collisions: on-ASIC filtering

- Reject hits from beam backgrounds corresponding to spiraling e^+e^- from e.g. incoherent pair production

 Train a classifier to remove hits from tracks with low p_T, small θ
e^+ e^- collisions: on-ASIC featurization

• Read out incident particle properties and uncertainties instead of pixel array
• Size of stored pixel data is independent of geometry
 Decouples buffer size from choice of pixel pitch, sensor thickness
• Good use case for **MAPS with 3D integration**
 MAPS → small pixels, thin sensors
 MAPS shift information to the periphery
 Additional layer on top would provide area to do the NN regression
e^+e^- collisions with on-ASIC data reduction

- **Critical design constraints** to keep beam backgrounds out of acceptance could be **relaxed**

 Innermost radius of vertex detector (right), θ acceptance, pixel pitch

- **Reprogramming NN weights for different \sqrt{s}** ensures the most effective filtering

 Adjust NN weights to change p_T and θ thresholds or compensate for radiation damage effects

- **Possibility to reduce thermal load** (material budget) by reading out less data

 Spiking neural networks are especially energy-efficient

- **Can significantly increase the rate**

 Could consider a low-energy machine that might require a trigger
Smart pixels: summary

- AI on-chip has great potential to **reduce data rates to manageable levels**
 - First implementation of the p_T filtering looks very promising!
 - Feature extraction for x, y, $α$, $β$ underway
- Plan to leverage **emerging technologies** to improve energy efficiency, accuracy
- Co-design with focus on preserving **information that is useful for physics**
 - For e^+e^- this reaches all the way down to accelerator level
 - Smart pixels would provide **more flexibility** in experimental design at linear e^+e^- machines
The smart pixels team

Alice Bean, Doug Berry, Manuel Blanco Valentin, Jennet Dickinson, Giuseppe Di Guglielmo, Karri DiPetrillo, Farah Fahim, Lindsey Gray, Jim Hirschauer, Shruti R. Kulkarni, Ron Lipton, Petar Maksimovic, Corrinne Mills, Benjamin Parpillon, Gauri Pradhan, Morris Swartz, Nhan Tran, Jieun Yoo, Aaron Young
Backup material
Pixel detectors at the LHC

- Highest data rates in HEP!
 - Only read out for triggered events
 - Measure charged particle tracks and vertices
- And getting higher…
 - Next generation detectors promise better resolution (position & angle), precision timing
 - More information, but also more data

What would we gain if we could analyze it all? Some aspirational targets:

- **Higgs self-coupling**: 5x increase in the low-m_{hh} spectrum from b-jet triggers.
- **WIMP dark matter**: 50x rate for low-p_T / disappearing tracks / long-lived particles.
- **New capabilities for high-rate, soft objects**: e.g. dark sector BSM, B-physics, and more!
Incident angle, p_T, and y_0

- Positive charge only
Track diagrams

• Combined with other sensor layers for 3D tracking
Track diagrams: angles

CMS x ⟶ CMS y ⟶ CMS z ⟶ α

CMS y ⟶ CMS x ⟶ β
Track diagrams: angles
Track diagrams: angles (2)