

Jet flavor identification [in FCC-ee]

F.Bedeschi, A. Del Vecchio, L. Forthomme, D. Garcia, Loukas Gouskos, M. Selvaggi,

International Workshop on Future Linear Colliders SLAC, May 2023

Type of elementary particle that initiated the jet

- Flavour tagging essential for the e⁺e⁻ physics program
 - Higgs sector
 - Measure couplings better than %-level
 - Top physics
 - precise determination of top quark properties [mass, width,..]
 - QCD physics
 - strong coupling (a_s), event shapes,..
 - modeling of hadronization, MC tuning

Basics for jet flavor identification

b/c-tagging

strange-tagging

Strange $p_T = 45 \,\text{GeV}$

Down $p_T = 45 \,\mathrm{GeV}$

- Large lifetime
- Displaced tracks/vertices
- Fragmentation
- non-isolated e/mu

- Large Kaon content
 - Charged Kaon as track
 - K/π separation
 - Neutral Kaons
 - KS→ππ, K_L

In the beginning: unclear what correlations existed among these

Ingredients for powerful jet taggers

Detectors

- Pixel/tracking systems: Little material, spatial resolution, precise track alignment
- PID systems: timing capabilities, energy loss (gas/silicon)
- Algorithm design
 - optimal representation of jet
 - optimal processing of detector signal & evt reconstruction

Scope of this work: General framework for developing flavor tagging algorithms for future colliders [eg., e⁺e⁻]

- Fast detector simulation
 - Understand detector requirements/ optimize design
 - $_{\odot}~$ eg., vertexing and PID capabilities of the FCCee detectors
- Develop a versatile flavor tagger
 - identify different particle species
 - Results shown for FCC-ee & IDEA detector

Detectors characteristics in e⁺e⁻

- e⁺e⁻ colliders provide a very clean environment
 - Lower occupancy , no pileup

Powerful detectors:

- Pixel/tracking detectors tailored for b/c tagging
 - Higher granularity wrt to LHC detectors
 - $_{\odot}~$ ATLAS/CMS pixel size: O(~100x100 $\mu m^2)$
 - Less tracking material
 - $_{\odot}$ ~0.4% X₀/layer CMS/ATLAS Pixel, ~0.15-0.2% X₀/layer in e⁺e⁻ detectors
 - o better impact parameter resolution/ less multiple scattering
 - $_{\odot}~$ CMS/ATLAS Pixel resolution: O(10) $\mu m;$ ~2-5 μm in e^+e^-
- PID capabilities
 - dE/dx (Si tracker), dN/dx (Drift)
 - Time-of-flight [timing layer]

Natural place to explore potential of jet tagging algorithms using advanced ML

Numbers indicative concepts evolve rapidly

Jet identification via ParticleNet

- Jet representation: Particle cloud
 - i.e. unordered set of particles

H. Qu and LG <u>PRD 101 056019 (2020)</u> F. Bedeschi, M. Selvaggi, LG <u>EPJ C 82 646 (2022)</u>

Jet identification via ParticleNet

- Jet representation: Particle cloud
 - i.e. unordered set of particles
- Network architecture: Graph Neural Networks
 - Particle cloud represented as a graph
 - particles: vertices of graph; interactions b/w particles: edges of graph
- Hierarchical learning approach: local \rightarrow global structures

Jet identification via ParticleNet

- Jet representation: Particle cloud
 - i.e. unordered set of particles
- Network architecture: Graph Neural Networks
 - Particle cloud represented as a graph
 - particles: vertices of graph; interactions b/w particles: edges of graph
- Hierarchical learning approach: local \rightarrow global structures

H. Qu and LG <u>PRD 101 056019 (2020)</u> F. Bedeschi, M. Selvaggi, LG EPJ C 82 646 (2022)

WP	WP Eff (c)		Mistag (ud)	Mistag (b)	
Loose	90%	7%	7%	4%	
Medium	80%	2%	0.8%	2%	

WP	WP Eff (s)		Mistag (ud)	Mistag (c)	Mistag (b)	
Loose	e 90% 20%		40%	10%	1%	
Medium	80%	9%	20%	6%	0.4%	

Loukas Gouskos

9

ParticleNet-ee: trained using Pythia8 samples

- tested on Pythia 8 [solid lines]
- tested on WZ-Pythia 6 [dashed lines]

b-tagging

Modest dependence

[still many tricks in the bag to reduce the dependence]

LCWS @ SLAC 2023

Improving robustness

FCC

Probe (h C.S

FCC-ee @ Zpole

- Current development relies solely on MC
 - Full control of class definition, lot's of [MC] data [~2M jets/ jet flavor]
 - but: MC != Data; potentially lead to large uncertainties
 - NB: it's also not Full SIM ..
- Another route: Use data
 - [Obvious] advantage: much smaller syst unc.
- How: Tag-and-probe @ Z pole
 - First: Tag one of the two jets with high purity
 - e.g. by using a pretrained MC-based algo
 - Then: create a training sample using the 2nd jet (probe).

Z→hadrons	~70%	0.7x10 ⁶ M			
→ uu/cc	~12%/flavor	8.4x10 ⁴ M/ flavor			
ightarrow dd/ss/bb	~15%/flavor	1.1x10 ⁵ M/ flavor			

Improving robustness (II)

- Take into account tagging performance [& mistag rates]
 - NB: Each class does not have to be 100% pure on specific jet flavor or have the same population

Best case: b-tagging

More "challenging": s-tagging

WP	Eff (b)	Mistag (g)	Mistag (ud)	Mistag (c)	WP	Eff (s)	Mistag (g)	Mistag (ud)	Mistag (c)	Mistag (b)
Loose	90%	2%	0.1%	2%	Loose	90%	20%	40%	10%	1%
Medium	80%	0.7%	<0.1%	0.3%	Medium	80%	9%	20%	6%	0.4%

- Back-of-the-envelope: Training sample @ Zpole
 - ◆ bottom jets: ~1x10⁵ M, strange jets: ~8.8x10⁴ M
 - all other jet flavors in between

Much larger training sample than what used for the MC-based training sample

Gluon tagging using data?

- Challenging... topic for discussion and brainstorming
 - For instance:

To be tested

Impact of detector configurations

- dN/dX brings most of the gain
 - TOF (3ps): marginal improvement
 - dN/dX + TOF (30ps):
 ~ perfect PID

- Additional pixel layer
 - c-tagging: 2x improved BKG rejection
 - marginal/no improvement in b-tagging

[*k*=8 for ParticleNet-EE]

- Fully connected graph
- Include per-particle-pair properties more directly

Loukas Gouskos

Pushing the limits further (II)

Improvement: up to 2x in BKG rejection

- up/down: better than random guess [thanks to jet charge]
- Tau identification: effectively no signal loss up to 0.1% fake rate

Loukas Gouskos

LCWS @ SLAC 2023

Teaser from analysis front

• Example: $Z(\rightarrow vv)H(\rightarrow qq)$

Signal extraction: 2D fit

gg

1.2

m(rec)

Powerful jet flavour identification important for e⁺e⁻ physics program

Sophisticated jet tagging algorithm developed for FCC-ee

- Striking improvement in tagging performance compared to previous tools
 - allows us to explore more of the detector and event reconstruction potential
- Fully integrated in FCCSW [data preparation, training, validation, inference, analysis]
- Exploration in [FCC-ee] physics analyses started
- Still room for improvement / other ideas to try
 - Strong interest by the theory and experiment communities
- An obvious area of synergy between the communities of the proposed experiments

Additional material

Particle ID: Cluster counting (dN/dx)

- Count number of primary ionization clusters along track path
- Avoids large Landau flukes
- Requires high granularity
- module added in Delphes

IDEA detector:

Particle ID: TOF

Good K/π separation at low-momenta:

$$t_{\text{flight}} \equiv t_{\text{F}} - t_{\text{V}} = \frac{L}{\beta} = \frac{L\sqrt{p^2 + m^2}}{p}$$

Assumption on vertex time [crucial for highly displaced K_s]

set TrackInputArray TimeSmearing/tracks

Time Of Flight Measurement

module TimeOfFlight TimeOfFlight {

1: assume vertex time tV = 0

set OutputArray tracks

set VertexTimeMode 2

Loukas Gouskos

#

FCC Physics Workshop, Krakow 2023

$3\sigma K/\pi$ separation for tracks w/ p<30 GeV

Designing a Graph-based tagger

- Jet: intrinsically <u>unordered set</u> of particles with relationships b/w the particles
 - i.e. human-chosen ordering not optimal

Designing a Graph-based tagger (II)

- Treat the jet as an <u>unordered set of particles</u>
- Rich set of information per particle
 - can be "viewed" as the coordinates of each particle in an abstract space

Improved Network architecture: Graph Neural Networks

- Particle cloud represented as a graph
 - Each particle: **vertex** of the graph
 - Connections between particles: the edges

Build the graph:

- One approach: Fully connected Graph [but computationally very expensive]
- Another possibility: apply some criteria
 - e.g., k-Nearest Neighbors (kNN)

Loukas Gouskos

FCC Physics Works25p, Krakow 2023

Designing a Graph-based tagger (III)

- Last step: Learn from the graphs
 - Follow a hierarchical learning approach:
 First learn local structures and then more global ones
- Convolution operations proven to be very powerful

Designing a Graph-based tagger (IV)

- Last step: Learn from the graphs
 - Follow a hierarchical learning approach:
 First learn local structures and then more global ones
- Convolution operations proven to be very powerful

point/particle cloud: ... but not straightforward on point/particle clouds

- Irregular and unordered sets
- Requires a permutation

invariant convolutional operation

Loukas Gouskos

FCC Physics Workshop, Krakow 2023

EdgeConv: Conv. on point clouds

Find the k-nearest neighbors of each point

EdgeConv: Conv. on point clouds

- Find the k-nearest neighbors of each point
- Design a permutation invariant convolution operation
 - Define an edge feature function \rightarrow aggregate edge features w/ a symmetric func.

EdgeConv: Conv. on point clouds

- Find the k-nearest neighbors of each point
- Design a permutation invariant convolution operation
 - Define an edge feature function \rightarrow aggregate edge features w/ a symmetric func.
- Update Graph (ie Dynamic Graph CNN, DGCNN): Using kNN in the feature space produced after EdgeConv
 - Can be viewed as a mapping from one particle cloud to another

ParticleNet for jet tagging

- Based on EdgeConv and DGCNN
 - but customized for the jet tagging task

EdgeConv block

Introduced:

- features beyond
 spatial coordinates
 residual connections
- · MLP conf.

FCC Physics Works B2p, Krakow 2023