k4Clue: Empowering Future Collider Experiments with CLUE

Erica Brondolin,
Felice Pantaleo, Marco Rovere
Introduction
CLUstering of Energy

- CLUE (CLUstering of Energy) is a fast density-based clustering algorithm for the next generation of sampling calorimeter with high granularity in HEP

- It uses energy density - rather than individual cell energy - to establish seeds, outliers, and followers in 2D planes.

- GPU-friendly, i.e. suitable for the upcoming era of heterogeneous computing in HEP

- Standalone repo:CLU - kalos
 gitlab.cern.ch
Step 1: Building Data Structure

- Querying neighborhood is a frequent operation in density-based clustering → **fast**!
- Build **Fixed-Grid Spatial Index** for hits on each layer:
 - Each tile in the grid hosts indices of hits inside it and has a fixed length of memory to store the hosted indices. It is independent by the detector granularity.
- To find the neighborhood hits $N_d(i)$ of i-hit, we only need to loop over hits in $\Omega_d(i)$

\[
d\text{-searchBox:} \\
\Omega_d(i) = \{ j : j \in \text{tiles touched by square window}(x_i \pm d, y_i \pm d) \} \\
\]

\[
d\text{-neighborhood:} \\
N_d(i) = \{ j : d_{ij} < d \} \subset \Omega_d(i) \\
\]
Step 2: Local energy density

- Calculate local energy density (ρ_i) in a distance (d_c)
 - Each hit j weighted by the deposited energy (E_j)
 - For each hit, calculate ρ_i

$$\rho_i = \sum_{j \in N_d(i)} E_j \times f(d_{ij}); \quad f(d_{ij}) = \begin{cases} 1, & \text{if } i = j \\ k, & \text{if } 0 < d_{ij} \leq d_c \\ 0, & \text{if } d_{ij} > d_c \end{cases}$$

convolution kernel $k = 0.5$

build data structure
density
Step 3: Find “closest higher hit”

- Calculate “Nearest-Higher” hit within $N_{dm}(i)$
 - Define $d_m = o_f \cdot d_c$
 - Find the closest hit with higher local energy density, n_{hi}
 $$n_{hi} = \begin{cases} \arg\min_{j \in \mathcal{N}_{dm}(i)} d_{ij}, & \text{if } |\mathcal{N}_{dm}(i)| \neq 0, \mathcal{N}_{dm}(i) = \{j : j \in N_{dm}(i), \rho_j > \rho_i\} \\ -1, & \text{otherwise} \end{cases}$$
 - Calculate the separation distance $\delta_i = \text{dist}(i, n_{hi})$

[Diagrams showing data structure, density, and nearest higher hits]
Step 4: Classify hits

- Promote as **seed** if $\rho_i > \rho_c$, $\delta_i > d_c$
- Demote as **outlier** if $\rho_i < \rho_c$, $\delta_i > o_f \cdot d_c$
- Assign unique, progressive cluster ID to each cluster
 - ** Followers** are defined and associated to their closest seed

Example of decision plot

![Decision Plot](image)
Clustering procedure recap

build data structure
Query the neighborhood of a point by looping over the points in N_d in the bins touched by the tiles intersected by d_c.

density
Hit position and energy used to calculate the hit's local energy density ρ_i and its distance δ_i to the nearest hit with higher local density.

nearest higher
Define the nearest-higher of each hit as the hit with the local energy density higher then the hits itself and within a distance of $d_m = o_f \times d_c$.

find seed
Use following criteria:
- seed: $\rho_i \geq \rho_c$ and $\delta_i \geq d_c$;
- outlier: $\rho_i < \rho_c$ and $\delta_i \geq (o_f \times d_c)$.

assign clusters
Register each remaining point as a follower to its nearest-higher.

Input parameters:
- d_c: Critical Distance
- o_f: Outlier Delta Factor
- ρ_c: Minimum Local Density
CLUE in the HGCAL reconstruction
CMS High Granularity Calorimeter

- Phase-2 upgrade of CMS is needed to cope with HL-LHC phase
 - A significant increase in the instantaneous luminosity (5 - 7.5x)
- Imaging calorimeter with very fine lateral and longitudinal segmentation, and precision timing capabilities
 - Covering $1.5 < \eta < 3.0$

<table>
<thead>
<tr>
<th>Both endcaps</th>
<th>Silicon</th>
<th>Scintillators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>$\sim 620 \text{ m}^2$</td>
<td>$\sim 400 \text{ m}^2$</td>
</tr>
<tr>
<td>Channel size</td>
<td>0.5 - 1 cm2</td>
<td>4 - 30 cm2</td>
</tr>
<tr>
<td>#Modules</td>
<td>$\sim 30'000$</td>
<td>$\sim 4'000$</td>
</tr>
<tr>
<td>#Channels</td>
<td>$\sim 6 \text{ M}$</td>
<td>240 k</td>
</tr>
<tr>
<td>Op. temp.</td>
<td>$-30 , ^\circ\text{C}$</td>
<td>$-30 , ^\circ\text{C}$</td>
</tr>
</tbody>
</table>

Ref.

CE-E : Electromagnetic Endcap Calorimeter
CE-H : Hadronic Endcap Calorimeter

~0.28 m
~2 m

Erica Brondolin (erica.brondolin@cern.ch)
HGCAL Software Reconstruction

- The HGCAL reconstruction framework is **TICL (The Iterative Clustering)**
- It starts by calibrating deposited energy in individual cells, also called RecHits → an order of 10^5 RecHits in the HGCAL detector for events @ 200 pileup
- CLUE clusters the RecHits in the same layer to produce **Layer Clusters (LCs)**
The package
Key4hep in a nutshell

The common software vision: key4hep

key4hep is a huge ecosystem of software packages adopted by all future collider projects, complete workflow from generator to analysis

- Event data model: EDM4HEP for exchange among framework components
 - Podio as underlying tool, for different collision environments
 - Including truth information
- Data processing framework: Gaudi
- Geometry description: DD4hep, ability to include CAD files
- Package manager: **Spack**: source /cvmfs/sw.hsf.org/key4hep/setup.sh
Integrating CLUE in Key4hep

- **k4Clue v01-00** (doi: [10.5281/zenodo.7851995](https://doi.org/10.5281/zenodo.7851995))
 - It’s adapted to the common event data model, **EDM4hep**
 - It includes a wrapper class to run in the **Gaudi** software framework
 - It’s included in the new **Key4hep** releases managed by Spack
Additional features w.r.t. **kalos/Clue**

- **Cluster hits in the entire 4π detector region**
 - Definition of the tessellated space (LayerTile) in the standalone version defines coordinates and searches only in the transverse plane
 - Modified basic structure of the LayerTile and the search algorithm to allow for the definition of a cylindrical surface
 \[x \rightarrow r\Phi \quad y \rightarrow z \]

- **Template CLUE algorithm classes**
 - To allow the possibility of defining several different calorimeter layouts
 - A dedicated documentation page in the package (**include/readme.md**) allows the user to follow a simple but detailed step-by-step procedure to introduce and test the preferred layout.

- **GitHub CI & EDM4hep Validation**
 - **edm4hep:CLUECalorimeterHit**: CalorimeterHit class with specific methods related to the CLUE algorithm
Performance evaluation
- CLD & CLICdet -
ECAL of CLICdet & CLD

- 40 layers of 5x5 mm2 Silicon cells & W
- The main difference between the two calorimeters lies in the layout parameters → To compensate for a lower detector solenoid field, the CLD design starts from a larger radius both in the barrel and in the endcap region w.r.t. CLICdet.
 - Further details in backup
ECAL of CLICdet & CLD

- 40 layers of 5x5 mm² Silicon cells & W
- The main difference between the two calorimeters lies in the layout parameters → To compensate for a lower detector solenoid field, the CLD design starts from a larger radius both in the barrel and in the endcap region w.r.t. CLICdet.
 - Further details in backup
- 500 events of single gamma at 10 GeV generated perpendicular to the surface with Geant4 General Particle Source
 - Main reason: no conversion in the tracker volume

Gun from vertex

→ many secondaries simulated

Gun from ECAL boundaries

→ mostly primaries
Parameters tuning

- Input parameters tuned for CLD
- Same ones tested also for CLICdet (similar geometry, same granularity)
- Critical Distance (d_c) is established by geometry granularity to contain (minimum) the close neighbors cells:
 - $d_c = 15$ mm
Parameters tuning

Varying the outlier factor (o_f)

Varying the minimum local density (ρ_c)

- CLD, 10 GeV gamma
 - $o_f = 1, \rho = 0.02$
 - $o_f = 2, \rho = 0.02$
 - $o_f = 3, \rho = 0.02$

- CLD, 10 GeV gamma
 - $\rho_c = 0.1, o_f = 0.01$
 - $\rho_c = 0.2, o_f = 0.02$
 - $\rho_c = 0.3, o_f = 0.02$

Erica Brondolin (erica.brondolin@cern.ch)
Higher energies

- 500 events with single gamma (from ECAL surface) at 100 GeV
- $d_c = 15.00$, $\rho_c = 0.02$, $\alpha_f = 3.0$
Multiple gamma event

- Produced with normal gun, i.e. particles generated from vertex
- 1 event with 500 single gammas each produced with 10 GeV

Only simulated calorimeter hits are shown
CLICdet results

- Using same input parameters selected for CLD

Comparison with Pandora Clusters not completely equitable comparison (it includes a dedicated calibration procedure), but comparable results in terms of energy linearity and resolution.
Performance evaluation
- Noble Liquid Calo -
Noble Liquid ECAL for FCC-ee

- 12 layers, only barrel considered
 - cell size in Φ: 17.9 mm - 20.7 mm
 - cell size in η: ~ 20 mm
- Sample (if not stated otherwise):
 - 500 single gamma at 10 GeV
 - $\theta_{[\text{min}, \text{max}]} = [50, 130]$
Parameters tuning

- 500 events with single gamma (from vertex) at 10 GeV
- \(d_c = 40.00, \ \rho_c = 0.03, \ \phi_f = 3.0 \)

Input parameters:
- \(d_c \): Critical Distance
- \(\phi_f \): Outlier Delta Factor
- \(\rho_c \): Minimum Local Density
Comparison with other cluster algorithms

- **Sliding window**: It considers the calorimeter as a two-dimensional grid in η-ϕ space, neglecting the longitudinal segmentation of the calorimeter.

- **Topological clustering**: It starts with a seed cell and then adds topologically connected calorimeter cells.

CLUE creates about \sim10 clusters per event (up to few GeV per layer)
Noise in Liquid Argon Calorimeter

- High level of noise in the detector
- In the topoclustering, there is no filter directly at the beginning for the noise, but this is done using cuts in the algorithm itself
- The main observable is the cell significance ξ_{cell} which is defined as the absolute value of the ratio of the cell signal to the expected noise in this cell
 \[\xi_{\text{cell}} = \frac{|E_{\text{cell}}|}{\sigma_{\text{cell}}^{\text{noise}}} \]
- CLUE hits w/noise selected with filter of $> 2\sigma_{\text{noise}}$
Comparison with other cluster algorithms

No noise

Including noise

LCWS 2023

Erica Brondolin (erica.brondolin@cern.ch)
Low(er) energy

- 500 events with single gamma (from vertex) at 2 GeV
 Motivated by flavor physics searches at Z peak
Conclusions & Outlook
Conclusions

● k4Clue package (v01-00) has improved upon the standalone CLUE
 ○ Run on the full detector (barrel & endcap)
 ○ Adapted for different types of calorimeters

● Analysis on three different future calorimeters has demonstrated the good performance for single gamma events
 ○ Good performance even in the presence of noise
 ○ Compared favorably to other baseline algorithms

This work highlights the adaptability and versatility of the CLUE algorithm for a wide range of experiments and detectors, as well as its potential for future high-energy physics experiments beyond CMS
 ○ Improvements from k4clue also under discussion to use the developments also in CMS (Phase-2 barrel region)
Conclusions

● Final article summarizing k4clue and its performance for future collider detectors almost ready
 ○ Computing time under study

● This research was supported by the CERN Strategic R&D Programme on Technologies for Future Experiments

● Special thanks go to the Key4hep team and the FCC-ee liquid calorimeter software experts for the support
Backup
Integrating CLUE in Key4hep

- **GitHub CI** to ensure that the modifications or additions to the software do not break the clusterization process
 - In the latest release was modified to focus on C++ code and EDM4hep data
 - Test on both current key4hep release and nightlies
- **Validation**
 - edm4hep:CLUECalorimeterHit
 - CalorimeterHit class with specific methods related to the CLUE algorithm
 - CLUEHistograms class to produce ntuples
CLICdet results

- Using same input parameters selected for CLD

Comparison with Pandora Clusters not completely equitable comparison (it includes a dedicated calibration procedure), but comparable results in terms of energy linearity and resolution
Noble Liquid Calo

Pre-filtering

- CLUE hits w/noise selected with filter of $> 2\sigma_{\text{noise}}$
Noble Liquid Calo
Comparison with other cluster algorithms

No significant effect on CLUE clusters - about ~10 per event (one per layer)

More than one SW and Topo cluster per event, but most of them with low energy
Noble Liquid Calo

Summary for 10 GeV gammas

Sliding Window
- Cluster energy > 1 GeV

Topological