

k4Clue: Empowering Future Collider Experiments with CLUE

Erica Brondolin,

Felice Pantaleo, Marco Rovere

2023 International Workshop on Future Linear Colliders, 17th May 2023

Introduction

CLUstering of Energy

• CLUE (**CLUstering of Energy**) is a fast density-based clustering algorithm for the next generation of sampling calorimeter with high granularity in HEP

- It uses energy density rather than individual cell energy to establish seeds, outliers, and followers in 2D planes.
- GPU-friendly, i.e. suitable for the upcoming era of heterogeneous computing in HEP

Step 1: Building Data Structure

- Querying neighborhood is a frequent operation in density-based clustering \rightarrow **fast!**
- Build **Fixed-Grid Spatial Index** for hits on each layer:
 - Each tile in the grid hosts indices of hits inside it and has a fixed length of memory to store the hosted indices. It is independent by the detector granularity.
- To find the neighborhood hits $N_d(i)$ of *i*-hit, we only need to loop over hits in $\Omega_d(i)$

Step 2: Local energy density

- Calculate local energy density (ρ_i) in a distance (d_c)
 - Each hit *j* weighted by the deposited energy (E_i)

Step 3: Find "closest higher hit"

- Calculate "Nearest-Higher" hit within N_{dm}(i)
 - Define $d_m = o_f * d_c$
 - \circ Find the closest hit with higher local energy density, nh_i

$$nh_{i} = \begin{cases} argmin_{j \in \hat{N}_{d_{m}}(i)} d_{ij}, \text{if } |\hat{N}_{d_{m}}| \neq 0, \hat{N}_{d_{m}}(i) = \{j : j \in N_{d_{m}}(i), \rho_{j} > \rho_{i}\} \\ -1, \text{otherwise} \end{cases}$$

• Calculate the separation distance $\delta_i = \text{dist}(i, nh_i)$

Step 4: Classify hits

- Promote as **seed** if $\rho_i > \rho_c$, $\delta_i > d_c$
- Demote as **outlier** if $\rho_i < \rho_c$, $\delta_i > o_f * d_c$
- Assign unique, progressive cluster ID to each cluster
 - Followers are defined and associated to their closest seed

Clustering procedure recap

Input parameters:

- d_c: Critical Distance
- o_f: Outlier Delta Factor
- ρ_c: Minimum Local Density

CLUE in the HGCAL reconstruction

CMS High Granularity Calorimeter

- Phase-2 upgrade of CMS is needed to cope with HL-LHC phase
 - A significant increase in the instantaneous luminosity (5 7.5x)
- Imaging calorimeter with very fine lateral and longitudinal segmentation, and precision timing capabilities
 - $\circ~$ Covering 1.5 < η < 3.0

Both endcaps	Silicon	Scintillators
Area	~620 m²	~400 m²
Channel size	0.5 - 1 cm ²	4 - 30 cm ²
#Modules	~30'000	~4'000
#Channels	~6 M	240 k
Op. temp.	-30 °C	-30 °C
Ref.		

CE-E : Electromagnetic Endcap Calorimeter CE-H : Hadronic Endcap Calorimeter

HGCAL Software Reconstruction

- The HGCAL reconstruction framework is TICL (The Iterative Clustering)
- It starts by calibrating deposited energy in individual cells, also called RecHits → an order of 10⁵
 RecHits in the HGCAL detector for events @ 200 pileup
- CLUE clusters the RecHits in the same layer to produce Layer Clusters (LCs)

The

package

Key4hep in a nutshell

The common software vision: key4hep

key4hep is a huge ecosystem of software packages adopted by all future collider projects, complete workflow from generator to analysis

- Event data model: EDM4HEP for exchange among framework components
 - Podio as underlying tool, for different collision environments
 - Including truth information
- Data processing framework: Gaudi
- Geometry description: DD4hep, ability to include CAD files
- Package manager: Spack: source /cvmfs/sw.hsf.org/key4hep/setup.sh

Integrating CLUE in Key4hep

- k4Clue v01-00 (doi: <u>10.5281/zenodo.7851995</u>)
 - It's adapted to the common event data model, EDM4hep
 - It includes a wrapper class to run in the Gaudi software framework
 - It's included in the new Key4hep releases managed by Spack

Key4HEP: Turnkey Software for Future Colliders	
Overview □ Repositories 19 Packages Λ People 15 Λ Teams Π Projects	
G Repositories	People
Q Find a repository Type + Language + Sort + Q New	▌▕▋Q₿₿⋧₽₽₽₿
k4FWCore Public Core Components for the Gaudi-based Key4HEP Framework ● C++ ☆ 3 ♀ 13 ⊙ 13 (i issue needs help) № 3 Updated 2 hours ago spack Public A flex/ble package manager that supports multiple versions, configurations, platforms, and compilers. ● Houn ☆ 0 ♀ 1532 ⊙ 0 ∩ № 3 Updated 12 hours ago	Top languages • C++ • Python • CMake • JavaScript • TeX
key4hep-validation Public	
 k4Clue Public ●Python ¥ 0 ¥ 3 ⊙ 3 № 2 Updated 5 days ago	
k4LCiOReader Public Generate EDMAhep collections from LCIO format data ● C++ ☆ 1 ♣ Apache-2.0 ♀ 6 ◯ 0 ♫ 0 Updated 5 days ago	

Additional features w.r.t. kalos/Clue

- Cluster hits in the entire 4π detector region
 - Definition of the tessellated space (LayerTile) in the standalone version defines coordinates and searches only in the transverse plane
 - Modified basic structure of the LayerTile and the search algorithm to to allow for the definition of a cylindrical surface

 $x \rightarrow r\Phi$ $y \rightarrow z$

- Template CLUE algorithm classes
 - To allow the possibility of defining several different calorimeter layouts
 - A dedicated documentation page in the package (<u>include/readme.md</u>) allows the user to follow a simple but detailed step-by-step procedure to introduce and test the preferred layout.
- GitHub CI & EDM4hep Validation
 - edm4hep:CLUECalorimeterHit :CalorimeterHit class with specific methods related to the CLUE algorithm

Performance evaluation _ CLD & CLICdet -

ECAL of CLICdet & CLD

- 40 layers of 5x5 mm² Silicon cells & W
- The main difference between the two calorimeters lies in the layout parameters → To compensate for a lower detector solenoid field, the CLD design starts from a larger radius both in the barrel and in the endcap region w.r.t. CLICdet.
 - Further details in backup

ECAL of CLICdet & CLD

- 40 layers of 5x5 mm² Silicon cells & W
- The main difference between the two calorimeters lies in the layout parameters → To compensate for a lower detector solenoid field, the CLD design starts from a larger radius both in the barrel and in the endcap region w.r.t. CLICdet.
 - Further details in backup
- 500 events of single gamma at 10 GeV generated perpendicular to the surface with <u>Geant4 General Particle Source</u>
 - Main reason: no conversion in the tracker volume

Parameters tuning

- Input parameters tuned for CLD
- Same ones tested also for CLICdet (similar geometry, same granularity)
- Critical Distance (d_c) is established by geometry granularity to contain (minimum) the close neighbors cells:

 \circ d_c = 15 mm

Parameters tuning

Higher energies

- 500 events with single gamma (from ECAL surface) at 100 GeV
- $d_c = 15.00, \rho_c = 0.02, o_f = 3.0$

Multiple gamma event

- Produced with normal gun, i.e. particles generated from vertex
- 1 event with 500 single gammas each produced with 10 GeV Only simulated calorimeter hits are shown

CLICdet results

• Using same input parameters selected for CLD

Comparison with Pandora Clusters not completely equitable comparison (it includes a dedicated calibration procedure), but comparable results in terms of energy linearity and resolution

Performance evaluation - Noble Liquid Calo -

Noble Liquid ECAL for FCC-ee

(cm) (cm)

256 56.5

252.5 51.6 249 46.6

245.5-41.7 242-36.7

231.5-21.9

228-16.9

224.5-

221 -7.1

217.5 -2.1-

216

31.8 238.5-235 -26.8

12

0

- 12 layers, only barrel considered •
 - cell size in Φ⁻ 17 9 mm 20 7 mm 0
 - cell size in n: ~ 20 mm 0
- Sample (if not stated otherwise):
 - 500 single gamma at 10 GeV Ο

Parameters tuning

- 500 events with single gamma (from vertex) at 10 GeV
- $d_c = 40.00, \rho_c = 0.03, o_f = 3.0$

Input parameters:

- d_c: Critical Distance
- o_f : Outlier Delta Factor
- ρ_c: Minimum Local Density

Comparison with other cluster algorithms

Calorimeters for the FCC-hh, Dec 2019

- Sliding window: It considers the calorimeter as a two-dimensional grid in η-φ space, neglecting the longitudinal segmentation of the calorimeter.
- **Topological clustering**: It starts with a seed cell and then adds topologically connected calorimeter cells

Noise in Liquid Argon Calorimeter

- High level of noise in the detector
- In the topoclustering, there is no filter directly at the beginning for the noise, but this is done using cuts in the algorithm itself
- The main observable is the cell significance ξ_{cell} which is defined as the absolute value of the ratio of the cell signal to the expected noise in this cell

 CLUE hits w/noise selected with filter of > 2σ_{noise}

Signal produced only with $\theta \sim 90.25^{\circ}$

Comparison with other cluster algorithms

Low(er) energy

Sliding Window cluster energy > 1GeV

Conclusions & Outlook

Conclusions

- k4Clue package (<u>v01-00</u>) has improved upon the standalone CLUE
 - Run on the full detector (barrel & endcap)
 - Adapted for different types of calorimeters
- Analysis on three different future calorimeters has demonstrated the good performance for single gamma events
 - Good performance even in the presence of noise
 - Compared favorably to other baseline algorithms

This work highlights the adaptability and versatility of the CLUE algorithm for a wide range of experiments and detectors, as well as its potential for future high-energy physics experiments beyond CMS

 Improvements from k4clue also under discussion to use the developments also in CMS (Phase-2 barrel region)

Conclusions

- Final article summarizing k4clue and its performance for future collider detectors almost ready
 - Computing time under study
- This research was supported by the CERN Strategic R&D Programme on Technologies for Future Experiments
- Special thanks go to the Key4hep team and the FCC-ee liquid calorimeter software experts for the support

	E Brondolin ¹ , M Rovere ¹ , and F Pantaleo ¹	
	¹ CERN, Switzerland	
	May 15, 2023	
	Abstract	
	Energy (CLUE) algorithm has shown excellent performance in clustering calculater this in the light Grammirz Calculater (HGCAL) developed for the Phase-2 upraction of the CME sequeri- ment. In this paper, we investigate the unitability of the CLUE algorithm for future linear collider experiments and test is capabilities conside the HGCAL solverare reconstruction. To this end, we developed a new parkage, McUne, which is now fully integrated into the Gaudi solverare framework of the effective constraints of the Gaudi solver and the effective constraints of the Gaudi solver integration of the of CLUE in the detection for future colliders CLUE for the CLUE constraints, and the detection of the future constraints of the effective constraints of the detective of the order of the effective constraints of the other performance for single gauma events, even in the presence of solve and also compared with other	
-	baseline algorithms. This work highlights the adaptability and versatility of the CLUE algorithm for a wide range of experiments and detectors and the algorithm's potential for future high-energy physics experiments beyond CMS.	
0	baseline algorithms. This work highlights the adaptability and versatility of the CLUE algorithm for a wide range of experiments and detectors and the algorithm's potential for future high-energy physics experiments beyond CMS. ontents Introduction	1
5	baseline algorithms. This work highlights the adaptability and versarility of the CLUE algorithm for a vide range of reperiments and detectors and the algorithm's potential for future high-energy physics experiments beyond CMS. ontents Introduction CLUE	1
0	baseline algorithms. This work highlights the adaptability and versatility of the CLUE algorithm for a wide range of experiments and detectors and the algorithm's potential for future high-energy physics experiments beyond CMS. Ontents Introduction CLUE 2.1 Clustering procedure	1 2 2
0	baseline algorithms. This work highlights the adaptability and versatility of the CLUE algorithm for a vide range of experiments and detectors and the algorithm's potential for future high-energy physics experiments beyond CMS. Contents Introduction CLUE 2.1 Clustering procedure	1 2 2 3
0	baseline algorithms. This work highlights the adaptability and versatility of the CLUE algorithm for a vide range of reperiments and detectors and the algorithm's potential for future high-energy physics experiments beyond CMS. contents Introduction CLUE 2.1 Clustering procedure The McClue package 3.1 Integrating CLUE III. KayAbap.	1 2 2 3 3
	baseline algorithms. This work highlights the adaptability and versatility of the CLUE algorithm for a vide range of experiments and detectors and the algorithm's potential for future high-energy physics experiments beyond CMS. Ontents Introduction CLUE 2.1 Clustering procedure 2.1 Clustering procedure 3.1 Integrating CLUE in Keythep 2.2 RECUE Additional featuress 2.2 RECUE Additional featuress	1 2 2 3 3 3
	baseline algorithms. This work highlights the adaptability and versatility of the CLUE algorithm for a vide range of reperiments and detectors and the algorithm's potential for future high-energy physics experiments beyond CMS. Soutents Introduction CLUE 2.1 Clustering procedure The k6Clue package 3.1 Integrating CLUE in Keythep 3.2 SecUlur Additional fortures 3.3 Testing and validation	1 2 2 3 3 3 4
	baseline algorithms. This work highlights the adaptability and versatility of the CLUF algorithm for a vide range of reperiments and detectors and the algorithm's potential for future high-energy physics experiments beyond CMS. Contents Introduction CLUE 2.1 Clustering procedure 2.1 Edistring procedure 2.1 Integrating CLUE in Keythep. 3.1 Integrating CLUE in Keythep. 3.3 Testing and validation Performance evaluation	1 2 3 3 3 4 4 4
	baseline algorithms. This work highlights the adaptability and versatility of the CLUE algorithm for a vide range of reperiments and detectors and the algorithm's potential for future high-energy physic experiments beyond CMS. contents Introduction CLUE 2.1 Clustering procedure 3.1 Integrating CLUE in feeybap. 3.3 Integrating CLUE in feeybap. 3.3 Testing and validation Performance evaluation 4.1 Performance for CLU and CLUCkiet detector.	1 2 3 3 3 4 4 4
	baseline algorithms. This work highlights the adaptability and versatility of the CLUF algorithm for a vide range of reperiments and detectors and the algorithm's potential for future high-energy physics experiments beyond CMS. contents Introduction CLUE 2.1 Clustering procedure	1 2 2 3 3 3 4 4 4 4 5
	baseline algorithms. This work highlights the adaptability and versatility of the CLUE algorithm for a vibe range of reperimenta and detectors and the algorithm's potential for future high-energy physic experiments beyond CMS. contents Introduction CLUE 2.1 Clustering procedure 7.1 Integrating CLUE in Seythep. 3.2 IdeCLUE dollinami fortures. 3.3 Testing and validation. Performance evaluation 4.1 Performance (CLUC) the CLUC detector . 4.1 Performance (CLUC) detector . 4.2 Results on Noble Limit Clatemeter.	1 2 2 3 3 3 4 4 4 4 5 5 7
	baseline algorithms. This work highlights the adaptability and versatility of the CLUE algorithm for a vide range of reperiments and detectors and the algorithm's potential for future high-energy physic experiments beyond CMS. contents Introduction CLUE 2.1 Clustering procedure 2.1 Integrating CLUE in Reythep 3.2 NetUpi additional fortures 3.3 Testing and validation Performance evaluation 4.1 CLD calorimeter results 4.1 CLC club club CLC (Club CLC) 4.1 CLD calorimeter results 4.2 Results on Kohe Liquid Calorimeter 4.2 Results on Kohe Liquid Calorimeter	1 2 3 3 3 4 4 4 4 5 5 7 9
2	baseline algorithms. This work highlights the adaptability and versatility of the CLUP algorithm for a vide range of reperiments and detectors and the algorithm's potential for future high-energy physics experiments beyond CMS. COLENTS CLUE 2.1 Clustering procedure 2.1 Clustering procedure 2.1 Clustering procedure 2.1 Integrating CLUE in KeyAhep 3.2 MeCLUE additional foctures 3.3 Testing and validation Performance evaluation 4.1 Performance for CLD and CLIC/det detector 4.1.2 CluChed colorimeter results 4.1.2 CluChed colori	1 22 33 33 4 4 4 5 5 5 7 9

Backup

Integrating CLUE in Key4hep

- **GitHub CI** to ensure that the modifications or additions to the software do not break the clusterization process
 - In the latest release was modified to focus on C++ code and EDM4hep data
 - Test on both current key4hep release and nightlies
- Validation
 - edm4hep:CLUECalorimeterHit
 - CalorimeterHit class with specific methods related to the CLUE algorithm
 - CLUEHistograms class to produce ntuples

CLICdet results

• Using same input parameters selected for CLD

Comparison with **Pandora Clusters** not completely equitable comparison (it includes a dedicated calibration procedure), but comparable results in terms of energy linearity and resolution

Noble Liquid Calo

Pre-filtering

• CLUE hits w/noise selected with filter of > $2\sigma_{noise}$

Noble Liquid Calo

Comparison with other cluster algorithms

LCWS 2023

Noble Liquid Calo **Sliding Window** Summary for 10 GeV gammas cluster energy > 1GeV 0.4 a.u. LAr. 10 GeV gamm 0.35 No noise. Sliding Window u = 9.622 ± 0.011 0.3 $\sigma = 0.237 \pm 0.008$ With noise, Sliding Window 0.25 u = 9.649 ± 0.012 0.4 0.4 a.u. a.u. $\sigma = 0.261 \pm 0.010$ 0.2 LAr, 10 GeV gamma LAr, 10 GeV gamma 0.35 $o_t = 3.0, \rho_c = 0.03$ 0.35 ---- No noise 0.15 - CLUE $\mu = 9.613 \pm 0.011$ $\mu = 9.613 \pm 0.011$ $\sigma = 0.250 \pm 0.008$ 0.1 $\sigma = 0.250 \pm 0.008$ 0.3 0.3 ----- No noise, >2σ_{noise} ---- Sliding Window 0.05 $\mu = 9.484 \pm 0.011$ $\mu = 9.623 \pm 0.011$ $\sigma = 0.250 \pm 0.008$ $\sigma = 0.237 \pm 0.008$ 0.25 0.25 0 1 → With noise, >2σnoise ----- Topological $\mu = 9.547 \pm 0.012$ Total energy [GeV/0.20] $\mu = 9.634 \pm 0.011$ $\sigma = 0.257 \pm 0.009$ $\sigma = 0.234 \pm 0.008$ 0.2 0.2 Topological 0.4______ Ľ. 0.15 0.15 ų. LAr, 10 GeV gamma 0.35 No noise, Topological $\mu = 9.634 \pm 0.011$ 0.3 0.1 0.1 $\sigma = 0.234 \pm 0.008$ With noise, topological 0.25 $\mu = 9.675 \pm 0.013$ σ = 0.258 ± 0.008 0.05 0.05 0.2 0.15 9.5 9 9.5 10 10.5 11 11.5 12 12.5 7.5 9.5 10 10.5 11 11.5 12 12.5 8 8 8.5 9 8.5 0.1 Total energy [GeV/0.20] Total energy [GeV/0.20] 0.05

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 Total energy [GeV/0.20]