# The WHIZARD generator: **Status report, News and Plans**







**BASED UPON:** 

HELMHOLTZ

hep-ph/9607454; hep-ph/9806432; hep-ph/0102195; 0708.4241; 1112.1039; 1206.3700; 1411.3834; 1510.02739; 1609.03390; 1811.09711; 2108.05362; 2208.09438; 2304.09883

**IN COLLABORATION WITH:** 









**CLUSTER OF EXCELLENCE QUANTUM UNIVERSE** 

P. Bredt / W. Kilian / K. Mękała / T. Ohl / T. Striegl / A.F. Żarnecki

### <u>Jürgen R. Reuter</u>







J. R. Reuter, DESY

Talk by Thorsten Ohl 06/2023: https://indico.cern.ch/event/1266492/



### WHIZARD **Overview(II)**

- Collider setup: Polarized beams, crossing angle, asymmetric beams
- Ş Event formats available: LHA, LHE(v1-3), HepMC2/3(RootIO), LCIO
- Versatile scripting language SINDARIN: arbitrary cuts & selections, scale expressions etc. etc. Ş
- Ş Factorized processes (unstable feature, NWA, specific decay helicity, polarized resonance decays)
- Ş Automated calculation of BRs of unstable particles, BRs can be set explicitly, e.g. to (N)NLO values
- Ş BSM models through UFO interface (cf. later)
- Ş Special treatment of top threshold physics (cf. later)
- Ş Reweighting / recasting processes + multiple weights/observables
- Ş WHIZARD API: callable as a library from any C/C++/Fortran/Python program / Jupyter
- Focus here new developments: Completion NLO automation, NLO matching, high-performance, revalidations, new physics implementations: long-lived particles, initial-state QED treatment, EW PDFs etc.



J. R. Reuter, DESY

```
model = NMSSM
process susyprod = e1, E1 => stau1, Stau1
process staudec = stau1 => neu1, e3
sqrts = 250 GeV
beams = e1, E1 => circe2 => isr
beams_pol_density = a(-1), a(+1)
beams_pol_fraction = 80%, 30%
```

```
n events = 10000
sample_format = lhef, stdhep, hepmc
simulate (susyprod)
```



### WHIZARD: User support / bug tracker

#### WHIZARD v3.1.2 (21.03.2023)



WHIZARD Tutorial

#### e.g. for Snowmass, 20.9.2020:



J. R. Reuter, DESY

#### https://launchpad.net/whizard

#### whizard@desy.de

https://indico.fnal.gov/event/45413/



### WHIZARD: User support / bug tracker

### WHIZARD v3.1.2 (21.03.2023)

¢

| Project | information |
|---------|-------------|
|---------|-------------|

|                                                                                                                   |                                                                       |                                                                                                                       |                                            | a Juergen Reuter (j.                                                | r.reuter) • Log (    |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------|----------------------|
| verview Code Bugs Blueprints Translation                                                                          | ns Answers                                                            |                                                                                                                       |                                            |                                                                     |                      |
| gistered 2019-06-26 by 🤱 Juergen Reuter                                                                           |                                                                       |                                                                                                                       |                                            | Change details                                                      |                      |
| HIZARD Event Generator                                                                                            |                                                                       |                                                                                                                       |                                            | Sharing                                                             |                      |
| HIZARD is a program system designed for the efficier                                                              | at calculation of multi-particle                                      | scattering cross sections and simulated event samples                                                                 |                                            | 🕞 Subscribe to bug mail                                             |                      |
| IZARD is a program system designed for the efficient                                                              | for arbitrary lepton and hadron                                       | colliders. Tree-level matrix elements are generated auto                                                              | matically for arbitrary                    | 🥖 Edit bug mail                                                     |                      |
| tonic processes by using the Optimized Matrix Eleme                                                               | ent Generator O'Mega. Matrix i<br>umarically stable signal and ba     | elements obtained by alternative methods (e.g., including                                                             | g loop corrections) may                    | Get Involved                                                        |                      |
| ionable efficiency for processes with up to eight fina                                                            | al-state particles; more particle                                     | es are possible. For more particles, there is the option to g                                                         | jenerate processes as                      | Report a bug                                                        |                      |
| ay cascades including complete spin correlations. Di                                                              | fferent options for QCD partor                                        | n showers are available.                                                                                              |                                            | Ask a question                                                      | _                    |
| arization is treated exactly for both the initial and fir<br>ider physics, an interface to the standard LHAPDF is | hal states. Final-state quark or l<br>provided. For Linear Collider p | lepton flavors can be summed over automatically where in<br>hysics, beamstrahlung (CIRCE) and ISR spectra are include | needed. For hadron<br>ed for electrons and | Register a blueprint                                                | -                    |
| btons. The events can be written to file in standard fo<br>n be hadronized.                                       | ormats, including ASCII, StdHEF                                       | , the Les Houches event format (LHEF), HepMC, or LCIO.                                                                | These event files can                      | 🔥 Help translate                                                    |                      |
| IZARD supports the Standard Model and a huge nun<br>ernal models from UFO files. There are also legacy in         | nber of BSM models. Model ex<br>Iterfaces to FeynRules and SAR        | tension <mark>s or completely different models can be added.</mark> W<br>RAH.                                         | HIZARD fully supports                      | Configuration Progress                                              |                      |
| code of released WHIZARD versions is hosted in a p                                                                | ublically accessible GitLab:                                          |                                                                                                                       |                                            | ▽ Configuration options                                             |                      |
| S://gittab.tp.nt.uni-siegen.de/wnizard/public                                                                     |                                                                       |                                                                                                                       |                                            | 🕖 Code                                                              | ×                    |
|                                                                                                                   |                                                                       |                                                                                                                       |                                            | 🕖 Bugs                                                              | ~                    |
| Home page 🛛 🤍 WIKI 🖤 External downloads                                                                           |                                                                       |                                                                                                                       |                                            | Translations                                                        | ×                    |
| oiect information                                                                                                 |                                                                       | Series and milestones                                                                                                 |                                            |                                                                     | •                    |
| ntainer: Driver:                                                                                                  |                                                                       |                                                                                                                       | <u>View full history</u>                   | Downloads                                                           |                      |
| WHIZARDs 🧭 📃 WHIZA                                                                                                | ARDs 🕖 😨                                                              | 31031131231                                                                                                           | 2023-05-31                                 | Latest version is 3.1.2                                             |                      |
|                                                                                                                   |                                                                       | <b>2.8.0</b> 2.8.1 2.8.2 2.8.                                                                                         | 2022-10-31<br>3 2.8.4 2.8.5 2.8.6          | whizard-3.1.2.tar.gz                                                |                      |
|                                                                                                                   |                                                                       |                                                                                                                       |                                            | released on 2023-03-21                                              |                      |
| metodata                                                                                                          |                                                                       |                                                                                                                       |                                            | <ol> <li>All downloads</li> </ol>                                   |                      |
|                                                                                                                   |                                                                       |                                                                                                                       |                                            | Announcements                                                       | 6                    |
|                                                                                                                   |                                                                       | 3.1.x series is the current focus of developmen                                                                       | . 🕖                                        | WHIZARD 3.1.2 released on 2023                                      | 3-03-21              |
|                                                                                                                   |                                                                       | 🛞 Register a series 🛛 🕕 View milestones                                                                               | 🕀 Create snap package                      | Just a bug fix release for a (harmle build dependence in the WHIZAR | ess) cyclic          |
| ode                                                                                                               | A                                                                     | Latest bugs reported                                                                                                  | <u>All bugs</u>                            | WHIZARD 3.1.1 released on 2023-                                     | 03-10<br>tability of |
| sion control system: Programm                                                                                     | ing languages:                                                        | 🧸 Bug #2017739: Update new hadronic states                                                                            | in WHIZARD's model files                   | phase-space mappings close to s                                     | Library of           |
| Fortran 20                                                                                                        | 08. ocaml 🕜                                                           | Reported on 2023-04-26                                                                                                |                                            | We make the lass of the set ind                                     | lack an              |



### https://launchpad.net/whizard

#### whizard@desy.de

- 706468 Gaussian or Breit wigner distribution
- 706412 Syntax for forcing two identical particles to different final states
- 706411 Various errors when generating events with (b) jets in the final state
- 706291 Error while generating NLO events with polarized e+ e- beams
- 706197 how to uninstall whizard
- 706070 default cuts
- 706008 issues with installing whizard with openloops











## **News on the UFO / BSM in WHIZARD**

model = SM(ufo) model = SM (ufo ("<my UFO path>"))

- WHIZARD 2.8.3: Full UFO (I) support
- Majorana statistics (3.0.0) cf. Talk by Krzysztof Mękała
- LO matrix elements from externals UFO models (particularly SMEFTSim v3.x)  $\boxed{\phantom{1}}$
- Customized propators
- Spin 0, 1/2, 1, [3/2, 2] supported [3.2.x]
- Arbitrary Lorentz structures supported
- 5-, 6-, 7-, 8-, ... point vertices (optimization for code generation pending)
- $\mathbf{\overline{M}}$  BSM SLHA input (2.8.3)
- Lots of bug reports and constructive feedback from many different users  $\mathbf{\underline{\mathbf{N}}}$
- Crazy color structures (sextets, decuplets, epsilon structures) (3.2.0)
- NLO (QCD) matrix elements from external UFO models with GoSam (3.2.x)

New paper on UFO 2.0: Darmé et al. arXiv: 2304.09883



J. R. Reuter, DESY



MuC example for SMEFT/HEFT UFO, from: T. Han et al. arXiv:2108.05362







J. R. Reuter, DESY









J. R. Reuter, DESY

Getty Villa, Pacific Palisades, Etruscan, 525 BC





- NLO SM automation for lepton-/hadron colliders completed 2022 Ģ Chokoufé 2017; Weiss 2017; Rothe 2021; Stienemeier 2022; Bredt 2022
- FKS subtraction, NLO matrix elements from OpenLoops/Recola/GoSam/...
- Ş also: resonance-aware FKS subtraction cf. Ježo/Nason, arXiv:1509.09071; Chokoufé, 2017
- Setup for automatic differential fixed-order results (histogrammed distributions)
- Photon isolation, photon recombination, light-, b-, c-jet selection



New: loop-induced processes supported







- NLO SM automation for lepton-/hadron colliders completed 2022 Ģ Chokoufé 2017; Weiss 2017; Rothe 2021; Stienemeier 2022; Bredt 2022
- FKS subtraction, NLO matrix elements from OpenLoops/Recola/GoSam/...
- also: resonance-aware FKS subtraction cf. Ježo/Nason, arXiv: 1509.09071; Chokoufé, 2017
- Setup for automatic differential fixed-order results (histogrammed distributions)
- Photon isolation, photon recombination, light-, b-, c-jet selection

|                        | ee @                | I TeV, NLC                  | QCD                          |      |
|------------------------|---------------------|-----------------------------|------------------------------|------|
|                        |                     | WHIZAR                      | D+OpenLoops                  |      |
| Process                |                     | $\sigma_{\rm LO}[{\rm fb}]$ | $\sigma_{\rm NLO}[{\rm fb}]$ | K    |
| $e^+e^- \rightarrow $  | jj                  | 622.737(8)                  | 639.39(5)                    | 1.03 |
| $e^+e^- \rightarrow c$ | jjj                 | 340.6(5)                    | 317.8(5)                     | 0.93 |
| $e^+e^- \rightarrow $  | jjjj                | 105.0(3)                    | 104.2(4)                     | 0.99 |
| $e^+e^- \rightarrow $  | jjjjj               | 22.33(5)                    | 24.57(7)                     | 1.10 |
| $e^+e^-  ightarrow$    | $t\bar{t}$          | 166.37(12)                  | 174.55(20)                   | 1.05 |
| $e^+e^- \rightarrow$   | $t\bar{t}j$         | 48.12(5)                    | 53.41(7)                     | 1.11 |
| $e^+e^- \rightarrow$   | $t\bar{t}jj$        | 8.592(19)                   | 10.526(21)                   | 1.23 |
| $e^+e^- \rightarrow$   | $t\bar{t}jjj$       | 1.035(4)                    | 1.405(5)                     | 1.36 |
| $e^+e^- \rightarrow$   | $t\bar{t}t\bar{t}$  | $0.6388(8)\cdot 10^{-3}$    | $1.1922(11)\cdot 10^{-3}$    | 1.87 |
| $e^+e^- \rightarrow$   | $t\bar{t}t\bar{t}j$ | $2.673(7)\cdot 10^{-5}$     | $5.251(11) \cdot 10^{-5}$    | 1.96 |
| $e^+e^-  ightarrow$    | $t\bar{t}H$         | 2.020(3)                    | 1.912(3)                     | 0.95 |
| $e^+e^- \rightarrow$   | $t\bar{t}Hj$        | $2.536(4) \cdot 10^{-1}$    | $2.657(4) \cdot 10^{-1}$     | 1.05 |
| $e^+e^- \rightarrow$   | $t\bar{t}Hjj$       | $2.646(8) \cdot 10^{-2}$    | $3.123(9) \cdot 10^{-2}$     | 1.18 |
| $e^+e^-  ightarrow$    | $t\bar{t}Z$         | 4.638(3)                    | 4.937(3)                     | 1.06 |
| $e^+e^- \rightarrow$   | $t\bar{t}Zj$        | $6.027(9) \cdot 10^{-1}$    | $6.921(11) \cdot 10^{-1}$    | 1.15 |
| $e^+e^-  ightarrow$    | $t\bar{t}Zjj$       | $6.436(21) \cdot 10^{-2}$   | $8.241(29) \cdot 10^{-2}$    | 1.28 |
| $e^+e^- \rightarrow$   | $t\bar{t}W^{\pm}jj$ | $2.387(8) \cdot 10^{-4}$    | $3.716(10) \cdot 10^{-4}$    | 1.56 |
| $e^+e^-  ightarrow$    | $t\bar{t}HZ$        | $3.623(19) \cdot 10^{-2}$   | $3.584(19) \cdot 10^{-2}$    | 0.99 |
| $e^+e^- \rightarrow$   | $t\bar{t}ZZ$        | $3.788(6) \cdot 10^{-2}$    | $4.032(7) \cdot 10^{-2}$     | 1.06 |
| $e^+e^-  ightarrow$    | $t\bar{t}HH$        | $1.3650(15) \cdot 10^{-2}$  | $1.2168(16) \cdot 10^{-2}$   | 0.89 |
| $e^+e^- \rightarrow$   | $t\bar{t}W^+W^-$    | $1.3672(21) \cdot 10^{-1}$  | $1.5385(22) \cdot 10^{-1}$   | 1.13 |
|                        |                     |                             |                              |      |



New: loop-induced processes supported







- NLO SM automation for lepton-/hadron colliders completed 2022 Ģ
- FKS subtraction, NLO matrix elements from OpenLoops/Recola/GoSam/...
- also: resonance-aware FKS subtraction
- Setup for automatic differential fixed-order results (histogrammed distributions)
- Photon isolation, photon recombination, light-, b-, c-jet selection

| ee @                                   | I TeV, NLC                  | QCD                          |      |
|----------------------------------------|-----------------------------|------------------------------|------|
|                                        | WHIZAR                      | D+OpenLoops                  |      |
| Process                                | $\sigma_{\rm LO}[{\rm fb}]$ | $\sigma_{\rm NLO}[{\rm fb}]$ | K    |
| $e^+e^- \rightarrow jj$                | 622.737(8)                  | 639.39(5)                    | 1.03 |
| $e^+e^-  ightarrow jjjj$               | 340.6(5)                    | 317.8(5)                     | 0.93 |
| $e^+e^-  ightarrow jjjjj$              | 105.0(3)                    | 104.2(4)                     | 0.99 |
| $e^+e^- \to jjjjjj$                    | 22.33(5)                    | 24.57(7)                     | 1.10 |
| $e^+e^- \to t\bar{t}$                  | 166.37(12)                  | 174.55(20)                   | 1.05 |
| $e^+e^- \rightarrow t\bar{t}j$         | 48.12(5)                    | 53.41(7)                     | 1.11 |
| $e^+e^- \rightarrow t\bar{t}jj$        | 8.592(19)                   | 10.526(21)                   | 1.23 |
| $e^+e^- \rightarrow t\bar{t}jjj$       | 1.035(4)                    | 1.405(5)                     | 1.36 |
| $e^+e^-  ightarrow t\bar{t}t\bar{t}$   | $0.6388(8) \cdot 10^{-3}$   | $1.1922(11) \cdot 10^{-3}$   | 1.87 |
| $e^+e^- \to t\bar{t}t\bar{t}j$         | $2.673(7) \cdot 10^{-5}$    | $5.251(11) \cdot 10^{-5}$    | 1.96 |
| $e^+e^- \to t\bar{t}H$                 | 2.020(3)                    | 1.912(3)                     | 0.95 |
| $e^+e^- \rightarrow t\bar{t}Hj$        | $2.536(4) \cdot 10^{-1}$    | $2.657(4) \cdot 10^{-1}$     | 1.05 |
| $e^+e^- \rightarrow t\bar{t}Hjj$       | $2.646(8) \cdot 10^{-2}$    | $3.123(9) \cdot 10^{-2}$     | 1.18 |
| $e^+e^-  ightarrow t \bar{t} Z$        | 4.638(3)                    | 4.937(3)                     | 1.06 |
| $e^+e^- \rightarrow t\bar{t}Zj$        | $6.027(9) \cdot 10^{-1}$    | $6.921(11) \cdot 10^{-1}$    | 1.15 |
| $e^+e^- \rightarrow t\bar{t}Zjj$       | $6.436(21) \cdot 10^{-2}$   | $8.241(29) \cdot 10^{-2}$    | 1.28 |
| $e^+e^- \rightarrow t\bar{t}W^{\pm}jj$ | $2.387(8) \cdot 10^{-4}$    | $3.716(10) \cdot 10^{-4}$    | 1.56 |
| $e^+e^- \rightarrow t\bar{t}HZ$        | $3.623(19) \cdot 10^{-2}$   | $3.584(19) \cdot 10^{-2}$    | 0.99 |
| $e^+e^-  ightarrow t \bar{t} Z Z$      | $3.788(6) \cdot 10^{-2}$    | $4.032(7) \cdot 10^{-2}$     | 1.06 |
| $e^+e^-  ightarrow t\bar{t}HH$         | $1.3650(15) \cdot 10^{-2}$  | $1.2168(16) \cdot 10^{-2}$   | 0.89 |
| $e^+e^- \to t\bar{t}W^+W^-$            | $1.3672(21) \cdot 10^{-1}$  | $1.5385(22) \cdot 10^{-1}$   | 1.13 |



J. R. Reuter, DESY

|                                | WHIZARD+OpenLoops           |                              |      |  |  |
|--------------------------------|-----------------------------|------------------------------|------|--|--|
| Process                        | $\sigma_{\rm LO}[{\rm fb}]$ | $\sigma_{\rm NLO}[{\rm fb}]$ | K    |  |  |
| $pp \rightarrow jj$            | $1.162(4) \cdot 10^9$       | $1.601(5) \cdot 10^9$        | 1.38 |  |  |
| $pp \rightarrow jjj$           | $9.01(4) \cdot 10^7$        | $7.46(9) \cdot 10^{7}$       | 0.83 |  |  |
| $pp \to t\bar{t}$              | $4.589(9) \cdot 10^5$       | $6.740(10) \cdot 10^5$       | 1.47 |  |  |
| $pp \rightarrow t\bar{t}j$     | $3.123(6) \cdot 10^5$       | $4.087(9) \cdot 10^5$        | 1.31 |  |  |
| $pp \rightarrow t\bar{t}jj$    | $1.360(4) \cdot 10^5$       | $1.775(7) \cdot 10^5$        | 1.31 |  |  |
| $pp \to t\bar{t}t\bar{t}$      | 4.485(6)                    | 9.070(9)                     | 2.02 |  |  |
| $pp \rightarrow W^{\pm}$       | $1.3749(8) \cdot 10^8$      | $1.7696(10) \cdot 10^8$      | 1.29 |  |  |
| $pp \rightarrow W^{\pm}j$      | $2.046(3) \cdot 10^7$       | $2.854(5) \cdot 10^{7}$      | 1.39 |  |  |
| $pp \rightarrow W^{\pm} jj$    | $6.856(12) \cdot 10^{6}$    | $7.814(27) \cdot 10^{6}$     | 1.14 |  |  |
| $pp \rightarrow W^{\pm} j j j$ | $1.840(5) \cdot 10^{6}$     | $1.978(7) \cdot 10^{6}$      | 1.07 |  |  |
| $pp \to Z$                     | $4.2541(3) \cdot 10^7$      | $5.4086(16) \cdot 10^7$      | 1.27 |  |  |
| $pp \rightarrow Zj$            | $7.215(4) \cdot 10^{6}$     | $9.733(10) \cdot 10^{6}$     | 1.35 |  |  |
| $pp \rightarrow Zjj$           | $2.364(5) \cdot 10^{6}$     | $2.676(7) \cdot 10^{6}$      | 1.13 |  |  |
| $pp \rightarrow Zjjj$          | $6.381(23) \cdot 10^5$      | $6.85(3) \cdot 10^5$         | 1.07 |  |  |
| $pp \rightarrow W^+W^+jj$      | $1.506(5) \cdot 10^2$       | $2.235(7) \cdot 10^2$        | 1.48 |  |  |
| $pp  ightarrow W^-W^-jj$       | $6.772(24) \cdot 10^{1}$    | $9.982(28) \cdot 10^{1}$     | 1.47 |  |  |
| $pp \rightarrow ZW^{\pm}$      | $2.780(5) \cdot 10^4$       | $4.488(4) \cdot 10^4$        | 1.61 |  |  |
| $pp \rightarrow ZW^{\pm}j$     | $1.609(4) \cdot 10^4$       | $2.0940(28) \cdot 10^4$      | 1.30 |  |  |
| $pp \rightarrow ZW^{\pm}jj$    | $8.06(3) \cdot 10^3$        | $9.02(4) \cdot 10^3$         | 1.12 |  |  |
| $pp \rightarrow ZZ$            | $1.0969(10) \cdot 10^4$     | $1.4183(11) \cdot 10^4$      | 1.29 |  |  |
| $pp \rightarrow ZZj$           | $3.667(9) \cdot 10^3$       | $4.807(8) \cdot 10^{3}$      | 1.31 |  |  |
| $pp \rightarrow ZZjj$          | $1.356(6) \cdot 10^3$       | $1.684(8) \cdot 10^3$        | 1.24 |  |  |
|                                |                             |                              |      |  |  |



Chokoufé 2017; Weiss 2017; Rothe 2021; Stienemeier 2022; Bredt 2022

cf. Ježo/Nason, arXiv: 1509.09071; Chokoufé, 2017

New: loop-induced processes supported

| _  | _   | _             |  |
|----|-----|---------------|--|
|    | NII | $\mathbf{OC}$ |  |
| ۷, |     |               |  |







- NLO SM automation for lepton-/hadron colliders completed 2022 Ģ
- FKS subtraction, NLO matrix elements from OpenLoops/Recola/GoSam/...
- Ş also: resonance-aware FKS subtraction
- Setup for automatic differential fixed-order results (histogrammed distributions)
- Photon isolation, photon recombination, light-, b-, c-jet selection

| ee @                                   | I TeV, NLC                  | QCD                          |      |
|----------------------------------------|-----------------------------|------------------------------|------|
|                                        | WHIZAR                      | D+OpenLoops                  |      |
| Process                                | $\sigma_{\rm LO}[{\rm fb}]$ | $\sigma_{\rm NLO}[{\rm fb}]$ | K    |
| $e^+e^- \rightarrow jj$                | 622.737(8)                  | 639.39(5)                    | 1.03 |
| $e^+e^-  ightarrow jjjj$               | 340.6(5)                    | 317.8(5)                     | 0.93 |
| $e^+e^-  ightarrow jjjjj$              | 105.0(3)                    | 104.2(4)                     | 0.99 |
| $e^+e^- \to jjjjjj$                    | 22.33(5)                    | 24.57(7)                     | 1.10 |
| $e^+e^- \to t\bar{t}$                  | 166.37(12)                  | 174.55(20)                   | 1.05 |
| $e^+e^- \rightarrow t\bar{t}j$         | 48.12(5)                    | 53.41(7)                     | 1.11 |
| $e^+e^- \rightarrow t\bar{t}jj$        | 8.592(19)                   | 10.526(21)                   | 1.23 |
| $e^+e^- \rightarrow t\bar{t}jjj$       | 1.035(4)                    | 1.405(5)                     | 1.36 |
| $e^+e^-  ightarrow t\bar{t}t\bar{t}$   | $0.6388(8) \cdot 10^{-3}$   | $1.1922(11) \cdot 10^{-3}$   | 1.87 |
| $e^+e^- \to t\bar{t}t\bar{t}j$         | $2.673(7) \cdot 10^{-5}$    | $5.251(11)\cdot 10^{-5}$     | 1.96 |
| $e^+e^- \to t\bar{t}H$                 | 2.020(3)                    | 1.912(3)                     | 0.95 |
| $e^+e^- \rightarrow t\bar{t}Hj$        | $2.536(4) \cdot 10^{-1}$    | $2.657(4) \cdot 10^{-1}$     | 1.05 |
| $e^+e^- \rightarrow t\bar{t}Hjj$       | $2.646(8) \cdot 10^{-2}$    | $3.123(9) \cdot 10^{-2}$     | 1.18 |
| $e^+e^-  ightarrow t \bar{t} Z$        | 4.638(3)                    | 4.937(3)                     | 1.06 |
| $e^+e^- \rightarrow t\bar{t}Zj$        | $6.027(9) \cdot 10^{-1}$    | $6.921(11) \cdot 10^{-1}$    | 1.15 |
| $e^+e^- \rightarrow t\bar{t}Zjj$       | $6.436(21) \cdot 10^{-2}$   | $8.241(29) \cdot 10^{-2}$    | 1.28 |
| $e^+e^- \rightarrow t\bar{t}W^{\pm}jj$ | $2.387(8) \cdot 10^{-4}$    | $3.716(10) \cdot 10^{-4}$    | 1.56 |
| $e^+e^- \rightarrow t\bar{t}HZ$        | $3.623(19) \cdot 10^{-2}$   | $3.584(19) \cdot 10^{-2}$    | 0.99 |
| $e^+e^-  ightarrow t \bar{t} Z Z$      | $3.788(6) \cdot 10^{-2}$    | $4.032(7) \cdot 10^{-2}$     | 1.06 |
| $e^+e^-  ightarrow t\bar{t}HH$         | $1.3650(15) \cdot 10^{-2}$  | $1.2168(16) \cdot 10^{-2}$   | 0.89 |
| $e^+e^- \to t\bar{t}W^+W^-$            | $1.3672(21) \cdot 10^{-1}$  | $1.5385(22) \cdot 10^{-1}$   | 1.13 |



J. R. Reuter, DESY

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                        |                                | WHIZARD+OpenLoops           |                              |      |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------|------------------------------|------|--|--|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                       | Process                        | $\sigma_{\rm LO}[{\rm fb}]$ | $\sigma_{\rm NLO}[{\rm fb}]$ | K    |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                         | $pp \rightarrow jj$            | $1.162(4) \cdot 10^9$       | $1.601(5) \cdot 10^9$        | 1.38 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                         | $pp \rightarrow jjj$           | $9.01(4) \cdot 10^7$        | $7.46(9) \cdot 10^{7}$       | 0.83 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                         | $pp \to t\bar{t}$              | $4.589(9) \cdot 10^5$       | $6.740(10) \cdot 10^5$       | 1.47 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                         | $pp \rightarrow t\bar{t}j$     | $3.123(6) \cdot 10^5$       | $4.087(9) \cdot 10^5$        | 1.31 |  |  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                        | $pp \rightarrow t\bar{t}jj$    | $1.360(4) \cdot 10^5$       | $1.775(7) \cdot 10^5$        | 1.31 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                         | $pp \to t\bar{t}t\bar{t}$      | 4.485(6)                    | 9.070(9)                     | 2.02 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                         | $pp \to W^\pm$                 | $1.3749(8) \cdot 10^8$      | $1.7696(10) \cdot 10^8$      | 1.29 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                         | $pp \rightarrow W^{\pm}j$      | $2.046(3) \cdot 10^7$       | $2.854(5) \cdot 10^7$        | 1.39 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                         | $pp \rightarrow W^{\pm} jj$    | $6.856(12) \cdot 10^{6}$    | $7.814(27) \cdot 10^{6}$     | 1.14 |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                        | $pp \rightarrow W^{\pm} j j j$ | $1.840(5) \cdot 10^{6}$     | $1.978(7) \cdot 10^{6}$      | 1.07 |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                        | $pp \to Z$                     | $4.2541(3) \cdot 10^7$      | $5.4086(16) \cdot 10^7$      | 1.27 |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                       | $pp \rightarrow Zj$            | $7.215(4) \cdot 10^{6}$     | $9.733(10) \cdot 10^{6}$     | 1.35 |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                       | $pp \rightarrow Zjj$           | $2.364(5) \cdot 10^{6}$     | $2.676(7) \cdot 10^{6}$      | 1.13 |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                        | $pp \rightarrow Zjjj$          | $6.381(23) \cdot 10^5$      | $6.85(3) \cdot 10^5$         | 1.07 |  |  |
| $ \begin{array}{c ccccc} pp \rightarrow W^-W^-jj & 6.772(24) \cdot 10^1 & 9.982(28) \cdot 10^1 & 1.47\\ pp \rightarrow ZW^{\pm} & 2.780(5) \cdot 10^4 & 4.488(4) \cdot 10^4 & 1.61\\ pp \rightarrow ZW^{\pm}j & 1.609(4) \cdot 10^4 & 2.0940(28) \cdot 10^4 & 1.30\\ pp \rightarrow ZW^{\pm}jj & 8.06(3) \cdot 10^3 & 9.02(4) \cdot 10^3 & 1.12 \end{array} $ | $pp \rightarrow W^+W^+jj$      | $1.506(5) \cdot 10^2$       | $2.235(7) \cdot 10^2$        | 1.48 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                         | $pp  ightarrow W^-W^-jj$       | $6.772(24) \cdot 10^{1}$    | $9.982(28) \cdot 10^{1}$     | 1.47 |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                         | $pp \rightarrow ZW^{\pm}$      | $2.780(5) \cdot 10^4$       | $4.488(4) \cdot 10^4$        | 1.61 |  |  |
| $pp \to ZW^{\pm}jj$   8.06(3) · 10 <sup>3</sup> 9.02(4) · 10 <sup>3</sup> 1.12                                                                                                                                                                                                                                                                                | $pp \rightarrow ZW^{\pm}j$     | $1.609(4) \cdot 10^4$       | $2.0940(28) \cdot 10^4$      | 1.30 |  |  |
|                                                                                                                                                                                                                                                                                                                                                               | $pp \rightarrow ZW^{\pm}jj$    | $8.06(3) \cdot 10^3$        | $9.02(4) \cdot 10^3$         | 1.12 |  |  |
| $pp \to ZZ$ 1.0969(10) $\cdot 10^4$ 1.4183(11) $\cdot 10^4$ 1.29                                                                                                                                                                                                                                                                                              | $pp \rightarrow ZZ$            | $1.0969(10) \cdot 10^4$     | $1.4183(11) \cdot 10^4$      | 1.29 |  |  |
| $pp \to ZZj$ 3.667(9) · 10 <sup>3</sup> 4.807(8) · 10 <sup>3</sup> 1.31                                                                                                                                                                                                                                                                                       | $pp \rightarrow ZZj$           | $3.667(9) \cdot 10^3$       | $4.807(8) \cdot 10^{3}$      | 1.31 |  |  |
| $pp \to ZZjj$   1.356(6) $\cdot 10^3$ 1.684(8) $\cdot 10^3$ 1.24                                                                                                                                                                                                                                                                                              | $pp \rightarrow ZZjj$          | $1.356(6) \cdot 10^3$       | $1.684(8) \cdot 10^3$        | 1.24 |  |  |



Chokoufé 2017; Weiss 2017; Rothe 2021; Stienemeier 2022; Bredt 2022

cf. Ježo/Nason, arXiv:1509.09071; Chokoufé, 2017

New: loop-induced processes supported

#### pp @ 13 TeV, NLO QCD

#### μμ @ 3 TeV, NLO EW

| $\mu^+\mu^- \to X, \sqrt{s} =$ | $\sigma_{ m LO}^{ m incl}~[{ m fb}]$ | $\sigma_{ m NLO}^{ m incl} ~[{ m fb}]$ | $\delta_{ m EW}$ [%] |
|--------------------------------|--------------------------------------|----------------------------------------|----------------------|
|                                |                                      |                                        |                      |
| $W^+W^-$                       | $4.6591(2)\cdot 10^2$                | $4.847(7)\cdot 10^2$                   | +4.0(2)              |
| ZZ                             | $2.5988(1)\cdot 10^{1}$              | $2.656(2)\cdot 10^{1}$                 | +2.19(6)             |
| HZ                             | $1.3719(1)\cdot 10^{0}$              | $1.3512(5)\cdot 10^{0}$                | -1.51(4)             |
| HH                             | $1.60216(7) \cdot 10^{-7}$           | $5.66(1)\cdot 10^{-7}$ *               |                      |
| $W^+W^-Z$                      | $3.330(2)\cdot 10^{1}$               | $2.568(8)\cdot 10^{1}$                 | -22.9(2)             |
| $W^+W^-H$                      | $1.1253(5)\cdot 10^{0}$              | $0.895(2)\cdot 10^{0}$                 | -20.5(2)             |
| ZZZ                            | $3.598(2)\cdot 10^{-1}$              | $2.68(1)\cdot 10^{-1}$                 | -25.5(3)             |
| HZZ                            | $8.199(4)\cdot 10^{-2}$              | $6.60(3)\cdot 10^{-2}$                 | -19.6(3)             |
| HHZ                            | $3.277(1)\cdot 10^{-2}$              | $2.451(5)\cdot 10^{-2}$                | -25.2(1)             |
| HHH                            | $2.9699(6)\cdot 10^{-8}$             | $0.86(7)\cdot 10^{-8}$ *               |                      |
| $W^+W^-W^+W^-$                 | $1.484(1)\cdot 10^{0}$               | $0.993(6)\cdot 10^{0}$                 | -33.1(4)             |
| $W^+W^-ZZ$                     | $1.209(1)\cdot10^0$                  | $0.699(7)\cdot 10^{0}$                 | -42.2(6)             |
| $W^+W^-HZ$                     | $8.754(8)\cdot 10^{-2}$              | $6.05(4)\cdot 10^{-2}$                 | -30.9(5)             |
| $W^+W^-HH$                     | $1.058(1)\cdot 10^{-2}$              | $0.655(5)\cdot 10^{-2}$                | -38.1(4)             |
| ZZZZ                           | $3.114(2)\cdot 10^{-3}$              | $1.799(7)\cdot 10^{-3}$                | -42.2(2)             |
| HZZZ                           | $2.693(2)\cdot 10^{-3}$              | $1.766(6)\cdot 10^{-3}$                | -34.4(2)             |
| HHZZ                           | $9.828(7)\cdot 10^{-4}$              | $6.24(2)\cdot 10^{-4}$                 | -36.5(2)             |
| HHHZ                           | $1.568(1)\cdot 10^{-4}$              | $1.165(4)\cdot 10^{-4}$                | -25.7(2)             |







## Validation of the Sudakov regime

| $\mu^+\mu^- \to X, \sqrt{s} = 10 \text{ TeV}$ | $\sigma_{ m LO}^{ m incl}~[{ m fb}]$ | $\sigma_{ m NLO}^{ m incl}~[{ m fb}]$ | $\delta_{ m EW} ~[\%]$ |
|-----------------------------------------------|--------------------------------------|---------------------------------------|------------------------|
|                                               |                                      |                                       |                        |
| $W^+W^-$                                      | $5.8820(2)\cdot 10^{1}$              | $6.11(1) \cdot 10^{1}$                | +3.9(2)                |
| ZZ                                            | $3.2730(4)\cdot 10^{0}$              | $3.401(4)\cdot 10^{0}$                | +3.9(1)                |
| HZ                                            | $1.22929(8)\cdot 10^{-1}$            | $1.0557(8)\cdot 10^{-1}$              | -14.12(7)              |
| HH                                            | $1.31569(5)\cdot 10^{-9}$            | $42.9(4)\cdot 10^{-9}$ *              |                        |
| $W^+W^-Z$                                     | $9.609(5)\cdot 10^{0}$               | $5.86(4) \cdot 10^{0}$                | -39.0(2)               |
| $W^+W^-H$                                     | $2.1263(9)\cdot 10^{-1}$             | $1.31(1)\cdot 10^{-1}$                | -38.4(5)               |
| ZZZ                                           | $8.565(4)\cdot 10^{-2}$              | $5.27(8)\cdot 10^{-2}$                | -38.5(9)               |
| HZZ                                           | $1.4631(6)\cdot 10^{-2}$             | $0.952(6)\cdot 10^{-2}$               | -34.9(4)               |
| HHZ                                           | $6.083(2)\cdot 10^{-3}$              | $2.95(3)\cdot 10^{-3}$                | -51.6(5)               |
| HHH                                           | $2.3202(4) \cdot 10^{-9}$            | $-1.0(2)\cdot 10^{-9}$ *              |                        |





J. R. Reuter, DESY



| $\mu^+\mu^- \to X, \sqrt{s} = 10 \text{ TeV}$ | $\sigma_{ m LO}^{ m incl}~[{ m fb}]$ | $\sigma_{ m LO+ISR}^{ m incl}$ [fb] | $\delta_{ m ISR} \ [\%]$ |
|-----------------------------------------------|--------------------------------------|-------------------------------------|--------------------------|
| $W^+W^-$                                      | $5.8820(2) \cdot 10^{1}$             | $7.295(7)\cdot 10^{1}$              | +24.0(1)                 |
| ZZ                                            | $3.2730(4)\cdot 10^{0}$              | $4.119(4) \cdot 10^{0}$             | +25.8(1)                 |
| HZ                                            | $1.22929(8) \cdot 10^{-1}$           | $1.8278(5) \cdot 10^{-1}$           | +48.69(4)                |
| $W^+W^-Z$                                     | $9.609(5)\cdot 10^{0}$               | $10.367(8)\cdot 10^{0}$             | +7.9(1)                  |
| $W^+W^-H$                                     | $2.1263(9)\cdot 10^{-1}$             | $2.410(2)\cdot 10^{-1}$             | +13.3(1)                 |
| ZZZ                                           | $8.565(4)\cdot 10^{-2}$              | $9.431(7)\cdot 10^{-2}$             | +10.1(1)                 |
| HZZ                                           | $1.4631(6)\cdot 10^{-2}$             | $1.677(1)\cdot 10^{-2}$             | +14.62(8)                |
| HHZ                                           | $6.083(2)\cdot 10^{-3}$              | $6.916(3)\cdot 10^{-3}$             | +13.68(6)                |

#### arXiv: 2208.09438

8 / 20

## Some examples for NLO results

#### ee @ I TeV, NLO QCD

| Process                                                                                                               | $\begin{array}{ c c c } & \texttt{WHIZARD+OpenLoops} \\ & \sigma_{LO} \; [fb] & \sigma_{NLO} \; [fb] \end{array}$ |                                               |  |  |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|
| $e^{+}e^{-} \rightarrow jj$ $e^{+}e^{-} \rightarrow jjj$ $e^{+}e^{-} \rightarrow jjjj$ $e^{+}e^{-} \rightarrow jjjjj$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                           | 639.39(5)<br>317.8(5)<br>104.2(4)<br>24.57(7) |  |  |
| $e^+e^- \rightarrow jjjjjjj$                                                                                          | 3.583(17)                                                                                                         | 4.46(4)                                       |  |  |

 $\sigma_{\rm LO}^{\rm tot}$ 

#### ee @ .25 TeV, NLO EW, pol.av.

 $\sqrt{\Delta_{\rm err, WHIZARD}^2 + \Delta_{\rm err, MUNICH}^2}$ 

J. R. Reuter, DESY

#### Cross-validation of WHIZARD and MUNICH orig. ref. [Kallweit et. al.: 1412.5157]

| process                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\alpha^n$ | MUNICH $\sigma_{\sf NLO}^{\sf tot}$ [fb] | WHIZARD $\sigma_{\sf NLO}^{\sf tot}$ [fb] | δ [%]  | dev [%] | $\sigma_{\rm NLO}^{\rm sig}$ |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------|-------------------------------------------|--------|---------|------------------------------|---------|
| pp  ightarrow                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | +OpenLoops                               | +OpenLoops                                |        |         |                              |         |
| ZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\alpha^2$ | $1.05729(1) \cdot 10^4$                  | $1.05729(11) \cdot 10^4$                  | -4.20  | 0.0001  | 0.01                         |         |
| $W^+Z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\alpha^2$ | $1.71505(2)\cdot 10^4$                   | $1.71507(2) \cdot 10^4$                   | -0.15  | 0.001   | 0.88                         |         |
| $W^-Z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\alpha^2$ | $1.08576(1)\cdot 10^4$                   | $1.08574(1)\cdot 10^4$                    | +0.07  | 0.001   | 0.90                         |         |
| $W^+W^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\alpha^2$ | $7.93106(7)\cdot 10^4$                   | $7.93087(21)\cdot 10^4$                   | +4.55  | 0.002   | 0.89                         |         |
| ZH                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\alpha^2$ | $6.18523(6) \cdot 10^2$                  | $6.18533(6) \cdot 10^2$                   | -5.29  | 0.002   | 1.17                         |         |
| $W^+H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\alpha^2$ | $7.18070(7) \cdot 10^2$                  | $7.18072(9) \cdot 10^2$                   | -2.31  | 0.0003  | 0.18                         |         |
| $W^-H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\alpha^2$ | $4.59289(4) \cdot 10^2$                  | $4.59299(5) \cdot 10^2$                   | -2.15  | 0.002   | 1.62                         |         |
| ZZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\alpha^3$ | $9.7429(2) \cdot 10^0$                   | $9.7417(11) \cdot 10^0$                   | -9.47  | 0.012   | 1.01                         |         |
| $W^+W^-Z$                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\alpha^3$ | $1.08288(2)\cdot 10^2$                   | $1.08293(10)\cdot 10^2$                   | +7.67  | 0.004   | 0.45                         |         |
| $W^+ZZ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\alpha^3$ | $2.0188(4) \cdot 10^1$                   | $2.0188(23) \cdot 10^1$                   | +1.58  | 0.0001  | 0.01                         |         |
| $W^-ZZ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\alpha^3$ | $1.09844(2) \cdot 10^1$                  | $1.09838(12) \cdot 10^1$                  | +3.09  | 0.006   | 0.51                         |         |
| $W^{+}W^{-}W^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\alpha^3$ | $8.7979(2) \cdot 10^1$                   | $8.7991(15) \cdot 10^1$                   | +6.18  | 0.014   | 0.79                         |         |
| $W^{+}W^{-}W^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\alpha^3$ | $4.9447(1) \cdot 10^{1}$                 | $4.9441(2) \cdot 10^{1}$                  | +7.13  | 0.013   | 2.52                         |         |
| ZZH                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\alpha^3$ | $1.91607(2) \cdot 10^0$                  | $1.91614(18) \cdot 10^0$                  | -8.78  | 0.004   | 0.39                         |         |
| $W^+ Z H$                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\alpha^3$ | $2.48068(2)\cdot 10^0$                   | $2.48095(28) \cdot 10^0$                  | +1.64  | 0.011   | 0.96                         |         |
| $W^- ZH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\alpha^3$ | $1.34001(1)\cdot 10^0$                   | $1.34016(15)\cdot 10^0$                   | +2.51  | 0.011   | 1.02                         |         |
| ZHH                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\alpha^3$ | $2.39350(2) \cdot 10^{-1}$               | $2.39337(32) \cdot 10^{-1}$               | -11.06 | 0.005   | 0.41                         |         |
| $W^+HH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\alpha^3$ | $2.44794(2) \cdot 10^{-1}$               | $2.44776(24) \cdot 10^{-1}$               | -12.04 | 0.007   | 0.74                         |         |
| $W^-HH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\alpha^3$ | $1.33525(1) \cdot 10^{-1}$               | $1.33471(19) \cdot 10^{-1}$               | -11.53 | 0.041   | 2.80                         | pp @ 13 |
| $\delta \equiv \frac{\sigma_{\text{NLO}}^{\text{tot}} - \sigma_{\text{LO}}^{\text{tot}}}{\text{tot}} \qquad \text{dev} \equiv \frac{ \sigma_{\text{WHIZARD}}^{\text{tot}} - \sigma_{\text{MUNICH}}^{\text{tot}} }{\sigma_{\text{WHIZARD}}^{\text{sig}}} \qquad \sigma_{\text{WHIZARD}}^{\text{sig}} = \frac{ \sigma_{\text{WHIZARD}}^{\text{tot}} - \sigma_{\text{MUNICH}}^{\text{tot}} }{\sigma_{\text{WHIZARD}}^{\text{tot}} - \sigma_{\text{MUNICH}}^{\text{tot}} }$ |            |                                          |                                           |        |         |                              |         |

 $\sigma_{\rm WHIZARD}^{\rm tot}$ 

| <i>bb</i> @ 13 TeV. | NLO OCD/EW mixed       | process<br>$pp \rightarrow$ | $lpha^n lpha_s^m$   | MG5_aMC@NLO $\sigma_{NLO}^{tot}$ [pb] [1804.10017] | WHIZARD $\sigma_{\sf NLO}^{\sf tot}$ [pb] | δ [%] | dev [%] |
|---------------------|------------------------|-----------------------------|---------------------|----------------------------------------------------|-------------------------------------------|-------|---------|
| <b>PP ©</b> 10 10,  |                        | $\overline{W^+ i}$          | $\alpha \alpha_s$   | 11552.(4)                                          | 11545.(4)                                 | -0.37 | 0.07    |
|                     |                        | Zj                          | $\alpha \alpha_s$   | 7062.(1)                                           | 7064.(3)                                  | -0.80 | 0.03    |
|                     |                        | $t\bar{t}$                  | $\alpha_s^2$        | 432.90(6)                                          | 432.99(5)                                 | -1.15 | 0.02    |
|                     |                        | $t\bar{t}W^+$               | $\alpha \alpha_s^2$ | 0.23025(3)                                         | 0.23017(5)                                | -4.53 | 0.03    |
|                     |                        | $tar{t}Z$                   | $lpha lpha_s^2$     | 0.50033(7)                                         | 0.50041(10)                               | -0.84 | 0.02    |
| ee @ .25 TeV, 1     | NLO EW, pol.av. + pol. | I                           |                     |                                                    |                                           |       | I       |

|                            | MCSANCee[37]                        |                                 | WHIZARD+RECOLA                      |                                      |                      |                       |
|----------------------------|-------------------------------------|---------------------------------|-------------------------------------|--------------------------------------|----------------------|-----------------------|
| $\sqrt{s} \; [\text{GeV}]$ | $\sigma_{ m LO}^{ m tot}~[{ m fb}]$ | $\sigma_{ m NLO}^{ m tot}$ [fb] | $\sigma_{ m LO}^{ m tot}~[{ m fb}]$ | $\sigma_{ m NLO}^{ m tot}~[{ m fb}]$ | $\delta_{ m EW}$ [%] | $\sigma^{ m sig}$ (LC |
| 250                        | 225.59(1)                           | 206.77(1)                       | 225.60(1)                           | 207.0(1)                             | -8.25                | 0.4/                  |
| 500                        | 53.74(1)                            | 62.42(1)                        | 53.74(3)                            | 62.41(2)                             | +16.14               | 0.2/                  |
| 1000                       | 12.05(1)                            | 14.56(1)                        | 12.0549(6)                          | 14.57(1)                             | +20.84               | 0.5/                  |
|                            |                                     |                                 |                                     |                                      |                      | 1                     |







LCWS 2023, SLAC, 16.5.2023



9 / 20

/0.5

-0.4

-0.6

-0.8

-1.0

### **Differential NLO fixed-order distributions**

ee @ I TeV, NLO QCD







J. R. Reuter, DESY

#### *pp* @ 13 TeV, NLO QCD

μμ @ 10 TeV, NLO EW

arXiv: 2208.09438

LCWS 2023, SLAC, 16.5.2023





10 / 20

### (Resonance) Matching to shower / hadronization





J. R. Reuter, DESY

## NLO QCD (+EW?) matching (and resonances)

- Matching between NLO real emission from hard ME and parton shower (PS)
- POWHEG method: hardest emission first [Frixione/Nason et al.]
- Process-independent NLO matching in WHIZARD
- Massive/massless emitters, back-to-pack kinematics, running  $\alpha_s$
- Real partitioning of phase space into singular and finite regions
- Resonance-aware subtraction: Intermediate resonances handled
- At the moment: NLO QCD; straightforward EW generalization
- Complete NLO events

$$\left|\overline{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int d\Phi_{\mathrm{rad}} R(\Phi_{n+1}) \right|$$

• POWHEG generate events according to the formula:

$$d\sigma = \overline{B}(\Phi_n) \left[ \Delta_R^{\text{NLO}}(k_T^{\text{min}}) + \Delta_R^{\text{NLO}}(k_T) \right]$$

• Uses the modified Sudakov form factor:

$$\Delta_R^{\rm NLO}(k_T) = \exp\left[-\int d\Phi_{\rm rad} \frac{R(\Phi_{n+1})}{B(\Phi_n)}\theta\right]$$



J. R. Reuter, DESY



LCWS 2023, SLAC, 16.5.2023



Λ

### NLO QCD (+EW?) matching (and resonances)



LHC 13 TeV: Drell-Yan  $pp \rightarrow \ell^+ \ell^$ compared to CMS data





J. R. Reuter, DESY





### NLO QCD (+EW?) matching (and resonances)



LHC 13 TeV: Drell-Yan  $pp \rightarrow \ell^+ \ell^$ compared to CMS data





J. R. Reuter, DESY

C 500: 
$$e^+e^- \rightarrow t\bar{t}j$$
  
with  $H_T := \sum_i \sqrt{p_{T,i}^2 + m_i^2}$   
 $e^+e^-$   
 $p_{T,\min} = 1 \text{ GeV}$   
 $p_{T,\min} = 5 \text{ GeV}$   
 $p_{T,\min} = 5 \text{ GeV}$   
 $p_{T,\min} = 5 \text{ GeV}$ 

1.5

2

 $|y^{Z}|$ 



### LCWS 2023, SLAC, 16.5.2023



13 / 20

### New features, ongoing development











## Quick note on the top threshold

- Exclusive Top threshold NLL-NLO QCD matched available
- Implemented for v2.5.1, revalidated in v3.0 parallelized
- Recent improvement in axial form factor matching
- Started to work on this implementation again





J. R. Reuter, DESY



model = SM\_tt\_threshold nrqcd\_order = 1 FF = 1 ! NLL resummed mpole\_fixed = 1 Vtb = 1 m1S = 172 GeV scale = m1S \$method = "threshold" process eett\_threshold = E1, e1 => Wp, Wm, b, B { \$restrictions = "3+5~t && 4+6~tbar" nlo\_calculation = real } sqrts = 350 GeV integrate (eett\_threshold)

Chokoufé/Hoang/Kilian/JRR/Stahlhofen/Teubner/Weiss, 1712.02220

LCWS 2023, SLAC, 16.5.2023



15 / 20

### Further work on QED: ePDFs, EW PDFs, QED shower

=

=

#### QED ISR, inclusive part

- Collinear resummation LO/LL
- NLO QED PDFs, collinear evolution @ NLL
- Crucial: numerical stability at kinematically peaked limit  $z \rightarrow l$

QED ISR [+FSR], exclusive part

Talk by Alan Price

Soft resummation + exclusive photons: 

□ Infrastructure in WHIZARD has started



J. R. Reuter, DESY

Gribov/Lipatov, 1972; Kuraev/Fadin, 1985; Skrzypek/Jadach, 1992; Cacciari/Deandrea/Montagna/Nicrosini, 1992 Frixione, 1909.0388; Bertone/Cacciari/Frixione/Stagnitto, 1911.12040 + 2207.03265; Bertone et al., 2110.xxxxx Status in WHIZARD: LO+LL ePDFs fully functional, NLO+NLL ePDFs implemented (incl. NLO QED evol.), validated, functional for Born processes

Also: fast interpolation (CTEQ-like) grids available, final infrastructure done, mapping for real radiation component ( $\Rightarrow$  no plots yet  $\otimes$ )

$$\begin{pmatrix} P_{\Sigma\Sigma} & P_{\Sigma\gamma} \\ P_{\gamma\Sigma} & P_{\gamma\gamma} \end{pmatrix}, \\ P_{e^{\pm}e^{\pm}} - P_{e^{\pm}e^{\mp}} \equiv P_{ee}^{\vee} - P_{e\bar{e}}^{\vee}.$$

ePDFs for polarized leptons !?

Q = 10 GeV, NLL, alpha running: ePDF (x = 0.900, S/GAM/NS) = 0.460772 0.023594 ePDF (x = 0.950, S/GAM/NS) = 0.986551 0.021590 ePDF (x = 0.990, S/GAM/NS) = 5.283617 0.019256 53.973578 ePDF (x = 0.999, S/GAM/NS) = 0.016663 Check singlet-nonsinglet linear combination ePDF (x = 0.950, e- - [S + NS]/2) = 0.000000 ePDF (x = 0.950, e+ - [S - NS]/2) = 0.000000

Yennie/Frautschi/Suura, 1961; Jadach/Ward/Yost, hep-ph/ 0006359/0103163+0104049+0211132+0602197+1409.4171, Piccinini ea.; Krauss/Price/Schönherr, 2203.10948 W. Kilian, K. Mękała, M. Löschner, JRR, T. Striegl

LCWS 2023, SLAC, 16.5.2023



#### 0.460727 0.986529 5.283613 53.973578

### **QED showers + matching: EW PDFs + EW shower**

#### QED ISR [+FSR], matching



- Implementation is starting





Matching between EPA+beam  $\gamma$ 

Based either on dipoles or antennae **C** Can then be combined with POWHEG-type matching Implementation is starting [building on code infrastructure of WHIZARD QCD (virt.) shower]



(a) Double EPA

 $\Box$  At very high energies (ee/ $\mu\mu$ ) [cf. Talk M. Peskin] EW PDFs are needed: w.i.p.



**EW PDFs** 

J. R. Reuter, DESY

 $\Box$  "Shower-recoil approach": generate  $p_{\perp}$  according to  $\frac{\alpha}{\pi} \cdot \log \frac{p_{\perp}}{m^2}$ Boost according to the generated  $p_{\perp}$  (avail. for for ISR, EPA or ISR+EPA) Algorithm applied recursively (similar to massive NLO EWISR PS construction) Recursive algorithm resembles a photon shower with *n* exclusive photons W. Kilian/JRR/T. Strieg





Matching real photons (beam spectra) and virtual photons (EPA)



(b) Full matrix elements

T. Han/K. Mękała/JRR/K. Xie



|                                   | WHIZAR                            |
|-----------------------------------|-----------------------------------|
|                                   | WHIZARD MC Integrators:           |
|                                   | - V<br>- [                        |
|                                   | Finalization                      |
|                                   | Synchronization                   |
| Braß/Kilian/IRR, arXiv:1811.09711 | Instruction   Sub-   instructions |
|                                   | Initialization                    |

- Parallelization of integration: OMP multi-threading for different helicities
- MPI parallelization (using OpenMPI or MPICH)
- Distributes workers over multiple cores, grid adaption needs non-trivial communication Ş
- Speedups of 10 to 30, saturation at O(100) tasks [can do also parallel event generation]
- Load balancer / non-blocking communication [v3.0.0]



J. R. Reuter, DESY

## in parallel

- /AMP: adaptive multi-channel Monte Carlo integrator
- /AMP2: fully MPI-parallelized version, using RNG stream generator
- VXInt: new adaptive generator + integrator based on normalizing flows ]
  - (w.i.p first as a stand-alone tool)













### WHIZARD on GPUs

- Joint project with former Phd student; now works for NEC supercomputers
- Main core serial (or MPI-parallel) on CPU, matrix elements as libraries off-loaded to GPU
- (Semi-) automatized ME generator exists for amplitudes on GPU
- First tests very simplistic: no fine-tuning, no sophisticated optimization of communication
- Moderate speed-ups can be seen for more complicated processes









### WHIZARD on GPUs

- Joint project with former Phd student; now works for NEC supercomputers
- Main core serial (or MPI-parallel) on CPU, matrix elements as libraries off-loaded to GPU
- (Semi-) automatized ME generator exists for amplitudes on GPU
- First tests very simplistic: no fine-tuning, no sophisticated optimization of communication
- Moderate speed-ups can be seen for more complicated processes

#### Very preliminary:

| Process                                                       | $t^{CPU}[s]$ | $t^{GPU}[s]$ |
|---------------------------------------------------------------|--------------|--------------|
| $e^+e^- \rightarrow t\bar{t}$                                 | 0.98         | 4.28         |
| $e^+e^-  ightarrow bW^+ \overline{b}W^-$                      | 28.8         | 23.1         |
| $e^+e^- \rightarrow bW^+\bar{b}W^-H$                          | 57.5         | 37.8         |
| $e^+e^-  ightarrow b\bar{b}\bar{\nu}_e e^-\bar{\nu}_\mu\mu^+$ | 154          | 124          |
| $e^+e^-  ightarrow 2j$                                        | 1.9          | 5.4          |
| $e^+e^-  ightarrow 3j$                                        | 45           | 65           |
| $e^+e^- \rightarrow 4j$                                       | 870          | 608          |
| $e^+e^-  ightarrow 5j$                                        | 4106         | 978          |
| $pp \rightarrow jj$                                           | 42           | 86           |
| $pp \rightarrow W^+W^-W^+W^-$                                 | 670          | 192          |



J. R. Reuter, DESY





### WHIZARD on GPUs

- Ş
- Ş
- Ş
- Ş
- Ş

#### Very preliminary:

| Process                                                       | $t^{CPU}[s]$ | $t^{GPU}[s]$ |
|---------------------------------------------------------------|--------------|--------------|
| $e^+e^- \rightarrow t\bar{t}$                                 | 0.98         | 4.28         |
| $e^+e^- \rightarrow bW^+\bar{b}W^-$                           | 28.8         | 23.1         |
| $e^+e^-  ightarrow bW^+ \bar{b}W^- H$                         | 57.5         | 37.8         |
| $e^+e^-  ightarrow b\bar{b}\bar{\nu}_e e^-\bar{\nu}_\mu\mu^+$ | 154          | 124          |
| $e^+e^- \rightarrow 2j$                                       | 1.9          | 5.4          |
| $e^+e^-  ightarrow 3j$                                        | 45           | 65           |
| $e^+e^- \rightarrow 4j$                                       | 870          | 608          |
| $e^+e^-  ightarrow 5j$                                        | 4106         | 978          |
| $pp \rightarrow jj$                                           | 42           | 86           |
| $pp \rightarrow W^+W^-W^+W^-$                                 | 670          | 192          |





J. R. Reuter, DESY

Ş

Joint project with former Phd student; now works for NEC supercomputers

Main core serial (or MPI-parallel) on CPU, matrix elements as libraries off-loaded to GPU

(Semi-) automatized ME generator exists for amplitudes on GPU

First tests very simplistic: no fine-tuning, no sophisticated optimization of communication

Moderate speed-ups can be seen for more complicated processes



Potential to combine with O'Mega virtual machine (OVM)

Much smaller code size, no compilation time, ideally suited for GPU

| process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BC size          | Fortran size     | $t_{\rm compile}$     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-----------------------|
| $gg \rightarrow gggggg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $428\mathrm{MB}$ | $4.0\mathrm{GB}$ | -                     |
| $gg \rightarrow ggggg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $9.4\mathrm{MB}$ | $85\mathrm{MB}$  | $483(18)\mathrm{s}$   |
| gg  ightarrow q ar q q' ar q' q'' ar q'' ar q'' g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $3.2\mathrm{MB}$ | $27\mathrm{MB}$  | $166(15)\mathrm{s}$   |
| $e^+e^- \to e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^+e^-e^-e^+e^-e^-e^+e^-e^+e^-e^+e^-e^+e^-e^-e^+e^-e^-e^+e^-e^-e^-e^+e^-e^-e^-e^-e^-e^-e^+e^-e^-e^-e^-e^-e^-e^-e^-e^-e^-e^-e^-e^-e$ | $0.7\mathrm{MB}$ | $1.9\mathrm{MB}$ | $32.46(13)\mathrm{s}$ |





### Simulation framework / bug fixes / new features

News on technicalities, work in progress, started projects: Ş Interface to PYTHIA8: Simon Braß, 2019 Event record exchanged to WHIZARD , (piping via LHE of course always works!) seems to work, bug fixes for shower history and decay vertices; some information missing (resonance history lost in translation)  $\hookrightarrow$  Talk by Zhijie Zhao

- Ş Bug fix (in v3.0.0) for PDFs with asymmetric beams; LHeC/FCC-eh: special PYTHIA6 interface setup
- Ş HALHF: 500 GeV plasma  $e^-$  on 31 GeV  $e^+$ : some asymmetric quirks in PYTHIA6, interface to PYTHIA8 appears to work pending some technical issues M. Berggren/K. Mękała / JRR / Z. Zhao [ → Talk by Brian Foster]
- Ş Issue resolved for Z pole running: numerical failure + technical bug fixed (led to artificial shift/jump in cross section)
- Ş Simulation of LLP (long-lived particles) / displaced vertices, also with oscillations of particles (just started)
- Technically allow for muon collider beam spectra (not yet produced for WHIZARD/CIRCE2) Ş
- Ş Bugfix: full ILC MC mass production files can be recasted (since WHIZARD v3.0.1)
- WHIZARD v3.0.2: SINDARIN now has sum and prod let scale = sum sqrt[Pt^2 + M^2] [t:T:j]



J. R. Reuter, DESY







## **Conclusions & Outlook**

- Take-home message: WHIZARD is a full-fledged NLO Monte Carlo generator 6
- Highlights: NLO EW / NLO QCD for lepton colliders, NLO EW/QCD mixed corrections at LHC
- Loop-induced processes
- Generic POWHEG-type matching for NLO QCD ready, for NLO QED/EW starting
- Recently lot of improvement on UFO interface: color structures, fermion-number violating models, SMEFT New upcoming feature: displaced vertices / LLP
- Many ongoing projects at different frontiers: finalizing NLO+NLL ePDFs, w.i.p. Soft resummation, QED showers, EW PDFs, preparing for HALHF
- Caveat: only few plots yet due to severe person-power issues











