

Current status of high-pressure gas regulation for SRF cavity fabrication in Japan

LCWS2023,

2023/May/17

KEK-iCASA Kensei Umemori

- Today I will show current status of our preparation for HPGR documents, which are under preparation.
- Most of the data shown in this slide is preliminary results. (Please do not consider as final one.)

On-going issues for HPGR

- Prepare documents for KHK (The High Pressure Gas Institute of Japan)
- Mechanical test for all materials (Nb, NbTi, Ti and welding sample)
- Stress analysis of the cavity with He tank

We are now preparing document for

- First cavity which will be fabricated at KEK-CFF
- FG cavity
- 900C heat treatment
- ILC cavity (TESLA shape + short & short beam tubes) design
- Apply for refrigerator safety regulation

Our strategy on HPGR application to KHK

- We prepare following 3 applications separately to KHK
 - Cavity & He jacket
 - Chimney (Ti/SUS clad material) ⇒ clad material might have another difficulty
 - 2-phase pipe (SUS)
- Now we mostly concentrate on the application of "cavity + He jacket".

 \Rightarrow Today's presentation

Later, we will combine these 3 components. And also joint the pipes for CM/cryogenic connection.

Surface treatment

- 900C heat treatment for better flux expulsion (better Qo)
- Standard recipe (EP +120C baking) or 2-step baking
- Ti ring will be welded before surface treatment
- Tuner
 - +2mm stroke (from TDR)
 - Stopper against 0.65mm extension at room temperature

900C heat treatment

- Cooldown scheme is not optimized to ILC CM.
- But still high temperature heat treatment have benefit for effective flux expulsion.
- Probably ~50% more flux can be expelled.
- Reducing residual resistance → High Q (low He loss) → reduce operation cost.

Frequency tuner

- Innovation Center for Applied Superconducting Accelerators 応用超伝導加速器イノベーションセンター
- The frequency tuner make the boundary condition for the high-pressure gas issue.
- Actual function of tuner should be fixed/understood before HPGR application.

The basic tuner design and function which currently considering for HPGR application.

- Current design is based on LCLS-II tuner, with slight modification(?)
- Stopper at +0.65mm at RT.
- Tuner stroke 2.0mm (from TDR)

Need to know details mechanism of tuner.

- How the stopper works?
- Is the tuner stroke mechanically limited by 2.0mm?
- Is the tuner used as compression or extension?

List of mechanical test

○ : test was done
△ : sample is under preparation
(empty) : will be prepared and tested

	N = 1 = - 1 1						
	RT	80K	4.2 K				
High RRR Nb (RRR > 270)	\bigcirc	\bigcirc	\bigcirc				
Low RRR Nb (40 < RRR < 150)	\bigcirc	\bigcirc	\bigcirc				
NbTi (Nb45%, Ti55%)	\bigcirc	\bigcirc	\bigcirc				
Ti type-2 (Japanese standard)							
H-RRR Nb & H-RRR Nb EBW	\bigtriangleup	\bigtriangleup	\bigtriangleup				
H-RRR Nb & L-RRR Nb EBW	\bigcirc	\bigcirc	\bigcirc				
L-RRR Nb & NbTi EBW	\bigtriangleup	\bigtriangleup	\bigtriangleup				
NbTi & Ti type-2 EBW							
Ti type-2 & Ti type-2 TIG							
Ti type-2 & Ti type-2 TIG							

KEK-CFF group working hard for sample preparation and mechanical test.
 ⇒ Allowable stress is estimated from the mechanical test results.
 All test samples were/will be heat treated at 900 C. Title of talk

Mechanical test at KEK

Mechanical test setup under Liquid Helium

Name, 2022/00/00

Stress analysis

- Stress simulation was carried out by using ANSYS.
- Simulation was done for the following 3 cases.

	F	Pressure [MF	Pa]	Temperatur	Tuner external			
	Inside Cavity	Between cavity and jacket	Outside jacket	e (degree)	load or allowable extension			
CASE-A	0	0.2	0	40	0.65 mm			
CASE-B	0	0.2	0	40 to -271.4	0.65 mm			
CASE-C	0	0.2	0	-271.4	2.0 mm			

High stress region for ILC cavity

Case A – Critical Region is End Cell- C.F Weld

51.2 MPa

75 MPa

Some region show relatively higher stress, which might be close to (or bit over?) the allowable stress.

Case B - Critical Region is End Cell- C.F Weld and C.F and Conical Disc Weld

Schedule(HPGR & cavity fabrication)

	FY2023			FY2024			FY2025			FY2026						
Prepare HPGR document																
(FG, Japanese)																
1st cavity fabrication at KEK																
Prepare HPGR document																
(Chimney, 2-phase pipe)																
Prepare HPGR documement																
(MG, Japanese)																
FG & MG cavity fabrication in Japan																
Prepare HPGR doucument																
(FG&MG, Europe, US)																
Cavity fabrication at Europe, US																

- Above is current rough schedule for ILC-TN
- HPGR document

 $FG \Rightarrow MG \Rightarrow Europe, US$

- KEK is preparing the documents for HPGR application.
- Currently, we are preparing the document for first ILC-TD FG cavity with helium tank, which will be fabricated at KEK-CFF.
- Many mechanical tests have been performed and currently on-going. Heat treatment of 900C is assumed.
- Allowable stress is to be decided from the results of mechanical tests.
- Stress analysis has been also carried out.
- Checking the consistency between the simulated stress intensity and allowable stress estimated from the mechanical test.