

Physics Summary

Dirk Zerwas IJCLab and DMLab May 19, 2023 LCWS

- Preparations
- Top
- Higgs
- Beyond

ECFA Study: KEY4HEP Aidan Robson, Aidan Robson, Mary-Cruz Fouz, Mary-List Physics, Physics Analysis Tools, Detector Jenny List Meetings:

ECFA Working Groups Higgs Factories

- **Meetings:**

https://indico.cern.ch/category/14055/

October 11-13, 2023 Paestum (south of Naples) • https://agenda.infn.it/event/34841/

Muon Collider

Started studies with ilcsoft will move to KEY4HEP

Many areas for fruitful collaboration:

- **High granular** calorimetry
- **ParticleFlow** reconstruction
 - ...

Beam induced Background of course different

Beamstrahlung/Background C^3

Different effects:

- **Beamstrahlung** ٠
- Pair production of ٠ electrons/muons/hadrons
- **Overlay due to bunch spacing** ٠ C³ timing structure

Expect and "observed" ILC/10

Anti-DID field reflects late hits into the outgoing beampipe

Black: no anti-DID **Red: anti-DID**

3

Sherpa

Juergen Reuter "Workhorse" of the electron-positron studies

NLO Automation (EW and QCD for ee) ٠

Whizard

- NLO differential fixed order ٠
- **Generic NLO-QCD Powheg like matching** ٠
- Top threshold: NLO-NLL QCD matched ٠

- Improvements user interface....
- Whizard on GPUs

One of the main generators used at LHC

- Now working on lepton version
- **YFS resummation compared to KKMC**

NLO and NNLO with GRIFFIN (muon pairs) ٠

Born	YFS	YFS+Recola	YFS+GRIFFIN
2114.5 pb	1463.09 pb	1494.7(8) pb	1497.5(7) pb

- Validated against MADGRAPH ٠
- To be released soon ٠
- **Includes Polarization** •

Tuning Pythia8

Zhijie Zhao Goal: Move from Whizard1.95+Pythia6 to Whizard3+Pythia8

- Tune to Z data: Pythia8 standard best •
- **Test NLO Powheg of Whizard:** ٠

Brendon Madison **Modeling Center-of-Mass Energy Precision using Dimuons and Bhabhas at ILC**

- **Combine GuineaPig with** ٠ Generator
- **Final state: Muon pairs,** ٠ electron pairs

Evaluating Detector and Physics Limitations on Center-of-Mass Energy Determination in e+e-Colliders Using Dileptons

 $\sigma/\sqrt{s} = 0.1216 \pm 0.0004\%$ (cf 0.1217% in TDR (0.190% \oplus 0.152%)/2)

Tracking detectors designed for ILC have the potential to measure beam energy related quantities with precision similar to the intrinsic energy spread using dimuon events (and also especially wide-angle Bhabha events).

Mass measurement

	top t
Result	172.21
Statistics	0.20
Method	0.05 ± 0.04
Matrix-element matching	0.40 ± 0.06
Parton shower and hadronisation	0.05 ± 0.05
Initial- and final-state QCD radiation	0.17 ± 0.02
Underlying event	0.02 ± 0.10
Colour reconnection	0.27 ± 0.07
Parton distribution function	0.03 ± 0.00
Single top modelling	0.01 ± 0.01
Background normalisation	0.03 ± 0.02
Jet energy scale	0.37 ± 0.02
b-jet energy scale	0.12 ± 0.02
Jet energy resolution	0.13 ± 0.02
Jet vertex tagging	0.01 ± 0.01
b-tagging	0.04 ± 0.01
Leptons	0.11 ± 0.02
Pile-up	0.06 ± 0.01
Recoil effect	0.39 ± 0.09
Total systematic uncertainty (without recoil)	0.67 ± 0.05
Total systematic uncertainty (with recoil)	0.77 ± 0.06
Total uncertainty (without recoil)	0.70 ± 0.05
Total uncertainty (with recoil)	0.80 ± 0.06

 m_{top} [GeV]

 $m_{
m top} = 172.21 \pm 0.20({
m stat}) \pm 0.67({
m syst}) \pm 0.39({
m recoil})\,{
m GeV}$

Charge Asymmetry (prediction 1%)

$$A_{ ext{C}}^{tar{t}} = rac{N(\Delta|y_{tar{t}}|{>}0) - N(\Delta|y_{tar{t}}|{<}0)}{N(\Delta|y_{tar{t}}|{>}0) + N(\Delta|y_{tar{t}}|{<}0)}$$

$$A_{
m C}^{tar{t}} = 0.0068 \pm 0.0015 \, ({
m stat} + {
m syst})$$

Estimate the precision on coupling operators

Excellent prospects for linear colliders

Best precision on topyukawa at highest energy

Valu	tes in $\%$ units	LHC	HL-LHC	ILC500	ILC550	ILC1000	CLIC
Sau	Global fit	12.2	5.06	3.14	2.60	1.48	2.96
$0g_t$	Indiv. fit	10.2	3.70	2.82	2.34	1.41	2.52

Ulascan Sarica $mH = 125.38 \pm 0.14 \text{ GeV}$ Spin 0, Spin1 excluded 99.999% CL **Couplings: standard**

Higgs Boson with CMS

e+

ZΖ., 2 H

Revisit analysis:

Z

Improved b tagging

Julie Munch Tordal

Kinematic fitting with better error parametrization •

ILC Higgs Self-coupling

In the Higgs rest frame

- **ZZ fusion (2 electrons)**
- **Background eliminated**
- 68% efficiency ٠

Motivation: N2HDM Model = THDM+real singlet CMS 95GeV di-photon and di-tau

Е	$\mathrm{SR}_{h_1}^{bb}$	$BR_{h_1}^{gg}$	$BR_{h_1}^{cc}$	$BR_{h_1}^{\tau\tau}$
\Rightarrow_0	.005	0.348	0.198 =	0.412

Search for tau decays collinear approximation

Sample	Even	Final		
	Presel.	Z mass	L mass $\mid h_1 + \operatorname{rec} \mid$	
Signal	1738.75	1168.28	702.356	5.267
qqqq	150.922	0	0	0
qql u	491142	2917.88	208.42	0.002
qq au u	70134.4	444.201	0	0
qqll	17053.6	678.604	44.2568	0.003
qq au au	13011.5	7503.45	3219.61	2.154
$qq\nu\nu$	34.3705	0	0	0
h_2	2552.55	895.052	22.1	0.02
Total	594079	12439.2	3494.39	
Significance			10.84	

With improved tau algorithm:

Decay	Tau	Events	expected	Signal
channel	tagging	Signal	Total bg.	significance
Hadronic	old	423.9	2733.3	7.544
	new	435.0	3042.9	7.376
Semi-leptonic	old	702.4	3494.4	10.84
	new	692.9	3475.1	10.73
Leptonic	old	260.0	1353.0	6.474
	new	276.0	1376.4	6.791

Models for Light Scalars Tania Robens

An short overview on low mass scalars at future lepton colliders

- many new physics models predict one/ several scalars below 125 GeV
- typical decays into $b \bar{b}, \tau^+ \tau^-$
- \bullet cross sections could reach up to $50\,{\rm fb}$ from Zh production
- decays of $h_{125} \rightarrow s \, s$ also within reach
- important connection to EWSB/ EW phase transitions

Howard Haber P-even, CP-violating Signals in Scalar-Mediated Processes

- Are new sources of CP violation present in the Higgs sector?
- P-even CP violation can arise in extended Higgs sectors
- Need to measure simultaneously:
- 1. $h_2 H^+ H^-$, $h_3 H^+ H^-$, $Z h_2 h_3$,
- 2. $h_2h_kh_k$, $h_3H^+H^-$, Zh_2h_3 , (for k = 2 or 3),
- 3. $h_3h_kh_k$, $h_2H^+H^-$, Zh_2h_3 , (for k = 2 or 3),
- 4. $h_2h_kh_k$, $h_3h_\ell h_\ell$, Zh_2h_3 , (for $k, \ell = 2$ or 3).

Electroweak Baryogenesis in aligned THDM

• A2HDM

Radiative corrections impact on extended Higgs sectors

125GeV Hig	125GeV Higgs		CP-even		CP-odd		ł
$h \to ff$	~	$H \rightarrow ff$	~	$A \to ff$	~	$H^{\pm} \to f\!f'$	~
$h \rightarrow VV^*$	~	$H \rightarrow VV$	~	$A \rightarrow Z h/H$	~	$H^{\pm} \to W^{\pm} \ h/H$	~
$h \to \gamma \gamma / Z \gamma / gg$	~	$H \rightarrow hh$	~	$A \to W^{\pm} H^{\mp}$	~	$H^{\pm} \to W^{\pm} A$	~
		$H \rightarrow AA/H^+H^-$	~	$A \rightarrow VV$	~	$H^\pm \to W^\pm Z/\gamma$	~
		$H \to Z A / W^{\pm} H^{\mp}$	~				

 $A \rightarrow Zh$

Calculations made available in H-COUP v3

11

Jan Klamka Long lived Particles with ILD Long-lived, with $c\tau = 1 \,\mathrm{m}$

$\Delta \mathrm{m}$	$1 { m GeV}$	2 GeV	3 GeV	5 GeV
Tot. eff. (correct / decays within TPC acceptance)	3.9%	37%	52.2%	60.4%
Corectness (correct / all found)	96.4%	97.4%	98.8%	98.6%

Axion-likeparticle and a photon

Thrust axis used

Supersymmetric partner of tau as NLSP

ILC Search for Staus

Teresa Nunez

Measurement of tau polarization measures asymmetry

Promising new method of reconstruction ¹³

Extensive searches in a multitude of signatures Presented here:

- **Higgsino pairs** .
- top-philic resonances .
- ALP ٠
- Clockwork .

- Large radius jets •
- No Ambulance in sight ٠

Sridhara Dasu **Extensive searches in a multitude of signatures**

CMS BSM

K. Mekala Heavy Neutrinos at ILC

Production and Decay:

RH neutrino pair-production at ILC Jurina Nakajima Nakajima

BSM physics at ILC250/500 with ILD

IP

- Hadronic fraction
- Forward-backward asymmetry
 - Improved TPC dEdx

 $AFB_{b} \& AFB_{c}$ (Both pol.)

Isosinglet vectorlike leptons

Nice illustration of the use of in-person conference: better understanding of detector simulation!

Includes Beamstrahlung and ISR

Tim Barklow **XCC: XFEL Compton** $\gamma\gamma$ **Collider Higgs Factory**

XCC s-channel $\gamma\gamma \rightarrow H$ @ $\sqrt{s} = 125 \text{ GeV}$

Revisting the photon collider:

- **XFELs+electron beams**
- **Lower CME**
- **Resonant production of Higgs**
- **One particle less to reconstruct**
- **Threshold for HH lower**

LUXE

Experiment at XFEL:

- **30-350TW optical laser**
- **Field intensity parameter** $\xi = \sqrt{4\pi\alpha}$

Adrian Irles

- **16.5GeV XFEL electron b**
- Effective Field 10¹⁴V/m

Deviation from pert.QED (passing Schwinger limit)

Optical Beam Dump experiment: new physics search

- **Good for ILC**
- **Uses ILC technology** ٠
- **Uses ILC detector developments** •