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UN 
Breakthrough 
Outcomes for 
2030

100% of projects due to be completed in

2030 or after are net zero carbon

in operation 

with at least 40% less embodied 

carbon compared to current practice

2030 Breakthroughs UNFCCC
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1. CLIC Drive Beam
5.6m internal dia. Geneva.

(380GeV, 1.5TeV, 3TeV)

2. CLIC Klystron
10m internal dia. Geneva. 

(380GeV)

3. ILC
Arched 9.5m span. Japan. 

(250GeV)

Reference: Tohoku ILC Civil Engineering Plan, 2020Reference: CLIC Drive Beam tunnel cross section, 2018 Reference: CLIC Klystron tunnel cross section, 2018



Life Cycle Assessment Framework

Goal and Scope 

Definition

Inventory Analysis

Impact 

Assessment

Interpretation

Intended application

Reasons for carrying out study

System boundaries

Assumptions and limitations

Data collection

Data validation

Data aggregation

Evaluate potential environmental 

and human health impacts

Conclusions, limitations 

and recommendations

ISO 14040:2006



Goal and Scope

• Goal: Evaluate the material and construction environmental impacts of 

the three proposed linear collider options, identifying hotspots and 

potential reduction opportunities.

• Scope: CLIC & ILC options (tunnels, caverns & access shafts).

• Methodology: Evaluates 18 environmental impact categories, including 

Global Warming Potential (GWP), using ReCiPe 2016 Midpoint (H) 

Method. LCA tool is Simapro with Ecoinvent database.



System boundaries

Use stage
[B1-B8]

End of life stage
[C1-C4]

B1 Use

B2 Maintenance

B3 Repair

B4 Replacement

B5 Refurbishment

B6 Operational Energy 

Use

B7 Operational Water 

Use

C1 Deconstruction/

Demolition

C2 Transport for 

Disposal

C3 Waste Processing for 

recovery

C4 Disposal

Benefits and 

Loads beyond 

the system 

boundary
[D]

Reuse

Recycling

Benefits and 

loads of 

additional 

infrastructure 

functions

Before use stage
[A0-A5]

A0 Preliminary studies

A1 Raw material supply

A2 Transport

A3 Manufacture

A4 Transport to works 

site

A5 Construction process

B8 User utilisation of 

infrastructure

Materials 

BS EN 17472:2022

Transport & 

construction 

activities



2030 Baseline assumptions
LCA Modules CLIC Drive Beam CLIC Klystron ILC

A1-A3 Materials Concrete (CEMI) & Steel (80% recycled)

A4
Transport of 

materials to site

Concrete: Local by road (50km) 

Steel: European by road (1500km)

Concrete: Local by road (50km) 

Steel: National by road (300km) 

A5
Material wasted in 

construction

Concrete insitu: 5%

Precast concrete: 1%

Steel reinforcement: 5%

A5

Transport of 

disposal materials 

off site

Concrete and steel recycling: 30km by road 

Concrete and steel landfill: 30km by road

Spoil: 20km by road

Assumed that 90% of EoL construction materials are recycled or repurposed and 10% is in landfill.

A5
Construction 

process
Tunnel Boring Machine (TBM) Drill & Blast

A5
Electricity mix 

2021/2022

Fossil: 12%

Non-fossil: 88%

Fossil: 71%

Non-fossil: 29%



System Sub-system Components Sub-components

CLIC Drive Beam 380GeV

Tunnels

Main accelerator tunnel 

Primary Lining

Permanent Lining

Invert

Turnarounds

Primary Lining

Permanent Lining

Invert

Shafts

9-18m dia.

Primary Lining

Permanent Lining

Caverns

BDS, UTRC, UTRA, BC2, DBD, 

service cavern, IR cavern, detector 

and service hall

Primary Lining

Permanent Lining

Data Hierarchy



A1-A5 Results 

System Sub-system Components Sub-components

Global Warming Potential, GWP (tCO2e)
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A1-A5 GWP (tCO2e)

System Sub-system Components Sub-components

98489, 78%

6107, 5%

10243, 8%

11982, 9%

A4

A5a

A5w

A1-A3

1. CLIC Drive Beam 380GeV
5.6m internal dia. 

Geneva

2. CLIC Klystron 380GeV
10m internal dia. 

Geneva

3. ILC 250GeV
Arched 9.5m span

Japan

228532, 79%

13661, 5%

18922, 6%

29115, 10%

A1-A3

A4

A5a

A5w

227401, 85%

9020, 4%

13293, 5%

16747, 6%

A1-A3

A5a
A5w

A4

Total A1-A5 GWP: 127000 tCO2e Total A1-A5 GWP: 290000 tCO2e Total A1-A5 GWP: 266000 tCO2e 

*Total GWP results reported to 3 significant figures



33476, 92%

1570, 4%

1356, 4%

A1-A3

A5A4

260151, 
65%

22253, 5%

119680, 30%

483091, 76%

110103, 17%

44639, 7%

System Sub-system Components Sub-components

A1-A3

A5

A1-A3

A5

A4

Californian High-Speed Rail System
Proposed scheme

49km long, twin-bore, 9m internal dia. NATM tunnel 

Crossrail, UK
As built

17km long, 5x twin-bore, 6.2m internal dia. TBM tunnel 

Note: Data is reported as CO2 but is reasonable to compare 
against CO2e.
Reference:
Understanding the contribution of tunnels to the overall 
energy consumption of and carbon emissions from a railway 
J. A. Pritchard , J. Preston, Transportation Research Group, 
University of Southampton, (2018).

Note: Data is reported as CO2 but is reasonable to compare 

against CO2e.

Reference: Understanding the contribution of tunnels to the overall 

energy consumption of and carbon emissions from a railway J. A. 

Pritchard , J. Preston, Transportation Research Group, University 

of Southampton, (2018).

Benchmarks
A1-A5 Global Warming Potential 

Highway tunnel, UK
Concept stage

1.4km long, twin bore, 10.7m internal dia. TBM tunnel

Reference: Arup Highway tunnel carbon calculation internal 
study (2020)

A4

Total A1-A5 GWP: 36400 tCO2e Total A1-A5 GWP: 213000 tCO2 Total A1-A5 GWP: 402000 tCO2

*Total GWP results reported to 3 significant figures



CLIC & ILC

System Sub-system Components Sub-components

A1-A5 Global Warming Potential (tCO2e)
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Tunnels Shafts Caverns

A1-A3 material breakdown (t)

Concrete

Steel

A1-A3 GWP breakdown (tCO2e)

445,278t

14,490t

80,972t

17,517t

(82%)

(18%)

(97%)

(3%)

CLIC Drive Beam 380GeV



A1-A5 Results 

System Sub-system Components Sub-components

Global Warming Potential, GWP (tCO2e)

0t

5,000t

10,000t

15,000t

20,000t

25,000t

tC
O

2
e

/k
m

 o
f 
tu

n
n

e
l

A1-A5 GWP (tCO2e/km comparison)
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Main accelerator tunnel

System Sub-system Components Sub-components

Note diameters are internal

A1-A5 Global Warming Potential (tCO2e/km)
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Crossrail (As built)
- 6.2m dia. TBM

Highway Tunnel
Example - 10.7m
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CLIC Klystron
380GeV
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Thames Tideway
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7.2m dia. TBM
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Project

A1-A5 GWP Benchmarks Comparison (tCO2e/km of tunnel)

1 Understanding the contribution of tunnels to the overall energy consumption of and carbon 

emissions from a railway J. A. Pritchard, J. Preston, Transportation Research Group, University 

of Southampton, (2018). Embodied energy evaluation for sections of the UK Channel Tunnel 

Rail link, Geotechnical Engineering, vol.165 Chau, Soga, O’Riordan and Nicholson (2011).

2 Arup Railway Tunnel Carbon Calculation internal study, (2022).

3 Thames Tideway Tunnel, Thames Water Utilities Limited, Application for Development 

Consent, Energy and Carbon Footprint Report, (2013).



CLIC Drive Beam 380GeV

System Sub-system Components Sub-components

A1-A3 Global Warming Potential (tCO2e)
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System Sub-system Components Sub-components
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ILC 250GeV

System Sub-system Components Sub-components
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Tunnels are inclusive of (total length: 33,042m)

Main accelerator tunnel

Damping ring tunnel

Access tunnels:

• Access tunnel CI

• Access tunnel CII

• Access tunnel DI

• Access tunnel DIII

• Access tunnel DI (EPZ)

• Access tunnel CII (EPZ)

Other tunnels:

• BDS beam tunnel Section A w9.5m

• BDS beam tunnel Section B w13m

• BDS beam tunnel Section C w17m

• BDS beam tunnel Section D w25m

• Loop sections at both ends

• Widening sections

• Reversal pits

• Peripheral tunnel 3.0m

• Peripheral tunnel 4.0m

• Peripheral tunnel 6.0m

• Peripheral tunnel 8.0m

• AT-DH and AT-DR tunnels

• RTML tunnels

A1-A3 Global Warming Potential (tCO2e)



ILC 250GeV

System Sub-system Components Sub-components
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CLIC Drive Beam 380GeV

System Sub-system Components Sub-components

A1-A5 ReCiPe 2016 Midpoint (H) Impact Categories
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ILC 250GeV

System Sub-system Components Sub-components
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CLIC & ILC

Baseline and projected electricity mix
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Reference: Our World in 
Data, France 2022

Reference: Our World in 
Data, Japan 2021

Reference: Energy pathways 
2050 key results, RTE 2021 

Reference: 6th Strategy 
Energy Plan, METI 2021



Tunnels reduction opportunities

41% possible A1-A5 GWP reduction

CLIC Drive Beam 380GeV
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System Sub-system Components Sub-components



Tunnels reduction opportunities

42% possible A1-A5 GWP reduction

ILC 250GeV

-30%

-16%

System Sub-system Components Sub-components

-26%

-13% -3%



CLIC Drive Beam

Annual CO2e of operations is 6% 

of embodied carbon

A1-A5 GWP is equivalent to 1.7 

decades of running accelerator

380GeV

Annual CO2e of operations is 12% 

of embodied carbon

A1-A5 GWP is equivalent to 0.8 

decades of running accelerator

1.5TeV

Annual CO2e of operations is 17% 

of embodied carbon

A1-A5 GWP is equivalent to 0.6 

decades of running accelerator

3TeV

43% 480ktCO2e 57%

A1-A5 Construction (tunnel: 21.08km)

Operation over 8 years

54%

A1-A5 Construction (tunnel: 17.56km)

Operation over 7 years

A1-A5 Construction (tunnel: 11.47km)

Operation over 8 years

68%

32%

185ktCO2e

*Operational estimates provided by CERN. 

Based on a projected electricity mix in 

2050 (50% nuclear, 50% renewables).

46%315ktCO2e

A1-A5 Global Warming Potential (tCO2e)



Parametric Visualisation
In development



• Evaluates the environmental impact of CLIC 

and ILC for the first time

• Establishes a baseline quantification with 

hotspots and reduction opportunities 

identified

• Provides a stepping stone for optimising 

design based on GWP impact

Summary
of LCA



• A1-A5 Global Warming Potential results:

• ~125-500 ktCO2e for CLIC Drive Beam 380GeV-3TeV

• ~290 ktCO2e for CLIC Klystron 380GeV

• ~270 ktCO2e for ILC 250GeV 

• A1-A3: Key drivers are concrete and steel, driven by 

the scale of the proposed schemes.

• A4-A5: Use local manufacturers to reduce transport 

distances. Energy transition has less of a significance on 

construction GWP compared to A1-A3 possible reductions 

and optimisations.

• GWP is one indicator, but the impact of other environmental 

indicators and reduction opportunities should be recognised

Key 
Takeaways



• Challenge the community to target ambitious aims to drive down 

the environmental impact and carbon footprint. 

• Technical: With the baseline established, design optimisation 

based on GWP and other impact categories can be made based on 

biggest impact; identify achievable technological advances; 

consideration of non-CE materials and equipment e.g. services, 

cooling.

• Socio-economic: Consideration of whole life impacts is 

important to provide the full picture, from construction to end of 

life. Consideration of the cost impact of carbon.

• Governance: Procurement for low carbon. Update the LCA to 

keep relevant with the expected changing net-zero aligned 

policies, legislations and governance that will drive standards.

Future
Consider-
ations




