Life Cycle Assessment

Comparative environmental footprint for future linear colliders CLIC and ILC

LCWS 2023 - SLAC | 16/05/2023

ARUP: *Suzanne Evans, Ben Castle, Yung Loo, Heleni Pantelidou, Jin Sasaki **CERN:** John Osborne, Steinar Stapnes, Benno List, Liam Bromiley **KEK:** Nobuhiro Terunuma, Akira Yamamoto, Tomoyuki Sanuki

(*presenter: suzanne.evans@arup.com)

 $\begin{array}{l} Global\\ GHG\\ Emissions\\ (tCO_2e) \end{array}$

Our World in Data based on Climate Analysis Indicators Tool (CAIT) 2019 (Adapted)

ARUP

100% of projects due to be completed in 2030 or after are net zero carbon in operation

with at least **40% less** embodied carbon compared to current practice

2030 Breakthroughs UNFCCC

UN Breakthrough Outcomes for 2030

ARUP

Our Influence

PAS2080:2023 Guidance Document (Adapted)

Our Influence

PAS2080:2023 Guidance Document (Adapted)

Linear Collider Options

1. CLIC Drive Beam

5.6m internal dia. Geneva. (380GeV, 1.5TeV, 3TeV)

2. CLIC Klystron

10m internal dia. Geneva. (380GeV)

3. ILC

Arched 9.5m span. Japan. (250GeV)

Reference: CLIC Klystron tunnel cross section, 2018

Reference: Tohoku ILC Civil Engineering Plan, 2020

Life Cycle Assessment Framework

Intended application Reasons for carrying out study System boundaries Assumptions and limitations

> Data collection Data validation Data aggregation

Evaluate potential environmental and human health impacts

Conclusions, limitations and recommendations

Goal and Scope

- **Goal:** Evaluate the material and construction environmental impacts of the three proposed linear collider options, identifying hotspots and potential reduction opportunities.
- **Scope:** CLIC & ILC options (tunnels, caverns & access shafts).
- Methodology: Evaluates 18 environmental impact categories, including Global Warming Potential (GWP), using ReCiPe 2016 Midpoint (H) Method. LCA tool is Simapro with Ecoinvent database.

System boundaries

2030 Baseline assumptions

LCA Modules		CLIC Drive Beam	CLIC Klystron	ILC				
A1-A3	Materials	Concrete (CEMI) & Steel (80% recycled)						
A4	Transport of materials to site	Concrete: Local by road Steel: European by road	(50km) (1500km)	Concrete: Local by road (50km) Steel: National by road (300km)				
A5	Material wasted in construction	Concrete insitu: 5% Precast concrete: 1% Steel reinforcement: 5%						
A5	Transport of disposal materials off site	Concrete and steel recyc Concrete and steel landfi Spoil: 20km by road Assumed that 90% of EoL co	Concrete and steel recycling: 30km by road Concrete and steel landfill: 30km by road Spoil: 20km by road Assumed that 90% of EoL construction materials are recycled or repurposed and 10% is in landfill.					
A5	Construction process	Tunnel Boring Machine (TBM)	Drill & Blast				
A5	Electricity mix 2021/2022	Fossil: 12% Non-fossil: 88%		Fossil: 71% Non-fossil: 29%				

Data Hierarchy

System	Sub-system	Components	Sub-components
CLIC Drive Beam 380GeV			
	Tunnels		
		Main accelerator tunnel	
			Primary Lining Permanent Lining Invert
		Turnarounds	
			Primary Lining Permanent Lining Invert
	Shafts		
		9-18m dia.	
			Primary Lining Permanent Lining
	Caverns		
		BDS, UTRC, UTRA, BC2, DBD, service cavern, IR cavern, detector and service hall	
			Primary Lining Permanent Lining

Materials

activities

ARUP

A1-A5 Results

Global Warming Potential, GWP (tCO₂e)

System		ub-system	Compone	ents	Sub-co	Sub-components ARUP ILC 250GeV rched 9.5m span Japan			
					A	RUP			
1. CLIC Drive Beam 5.6m internal dia Geneva	380GeV	2. CLIC Klys 10m inte Ger	ernal dia. neva		3. ILC 250Ge Arched 9.5m spa Japan	₽V an			
11982, 9% A5a		29115, 10% 18922, 6%A5a		1 13293, 5% 9020, 4%	6747, 6% A5w				

Total A1-A5 GWP: 127000 tCO₂e

Total A1-A5 GWP: 290000 tCO₂e

Total A1-A5 GWP: 266000 tCO₂e

Benchmarks

A1-A5 Global Warming Potential

Total A1-A5 GWP: 36400 tCO₂e

Reference: Arup Highway tunnel carbon calculation internal study (2020)

*Total GWP results reported to 3 significant figures

Total A1-A5 GWP: 213000 tCO₂

<u>Note:</u> Data is reported as CO_2 but is reasonable to compare against CO_2e .

<u>Reference:</u> Understanding the contribution of tunnels to the overall energy consumption of and carbon emissions from a railway J. A. Pritchard , J. Preston, Transportation Research Group, University of Southampton, (2018).

Total A1-A5 GWP: 402000 tCO₂

<u>Note:</u> Data is reported as CO_2 but is reasonable to compare against CO_2e .

Reference:

Understanding the contribution of tunnels to the overall energy consumption of and carbon emissions from a railway J. A. Pritchard , J. Preston, Transportation Research Group, University of Southampton, (2018).

Materials

Transport &

construction

activities

ARUP

A1-A5 Results

Global Warming Potential, GWP (tCO₂e)

A1-A5 GWP (tCO₂e/km comparison)

Main accelerator tunnel

A1-A5 Global Warming Potential (tCO₂e/km)

A1-A5 GWP Benchmarks Comparison (tCO2e/km of tunnel)

 2 Arup Railway Tunnel Carbon Calculation internal study, (2022).
3 Thames Tideway Tunnel, Thames Water Utilities Limited, Application for Development Consent, Energy and Carbon Footprint Report, (2013).

Sys	stem	Sub-syste	em	Compor	nents	Sub	-components
CLI A1-A3 GI	C Drive obal Warming P	Beam 38 otential (tCO ₂ e)	BOGeV	innels (tCO ₂ e)	Materials Transport & construction activities	A1 Raw material supply A2 Transport A3 Manufacture A4 Transport to works site A5 Construction process	ARUP
80,00	Ot						
70,00	Ot						
60,00	Ot						
50,00	Ot						
ө ² О О О	Ot						
30,00	Ot						
20,00	Ot						
10,00	Ot						
	Ot	3m beam turnaround		Ма	in linear accelerator	tunnel	

CLIC Drive Beam 380GeV

A1-A3 Global Warming Potential (tCO₂e)

40.000+	A1-A3 GWP Tunnels (tCO ₂ e)									
40,0001										
35,000t										
30,000t										
25,000t										
00 00 00 00 00 00 00 00 00 00 00 00 00									_	
15,000t										
10,000t										
5,000t						_	_			
Ot	Primary Lining Rock bolting	Primary Lining Rebar	Insitu Concrete Permanent Lining	Shotcrete Primary Lining	Permanent Lining SFRC	Invert Rebar	Permanent Lining Rebar	Grout	Insitu Concrete Invert	e Precast Concrete Permanent Lining

Sub-components

ARUP

ILC 250GeV

A1-A3 Global Warming Potential (tCO₂e)

Tunnels are inclusive of (total length: 33,042m)

Main accelerator tunnel Damping ring tunnel

Access tunnels:

- Access tunnel CI
- Access tunnel CII
- Access tunnel DI
- Access tunnel DIII
- Access tunnel DI (EPZ)
- Access tunnel CII (EPZ)

Other tunnels:

- BDS beam tunnel Section A w9.5m
- BDS beam tunnel Section B w13m
- BDS beam tunnel Section C w17m
- BDS beam tunnel Section D w25m
- Loop sections at both ends
- Widening sections
- Reversal pits
- Peripheral tunnel 3.0m
- Peripheral tunnel 4.0m
- Peripheral tunnel 6.0m
- Peripheral tunnel 8.0m
- AT-DH and AT-DR tunnels
- RTML tunnels

Sy	vstem		Su	ıb-syste	m		Compo	nents		Sub-co	mponents
ILC A1-A3 G	250 Blobal Wa	GeV	ential (tCC)₂e)						A	RUP
80.000t				A1	-A3 GWP ⁻	Funnels (tCC	0 ₂ e)				Primary lining Permanent lining Shielding wall
70,000t											_
60,000t											
50,000t											
O 0 2 40,000t										_	
30,000t										_	
20,000t											
10,000t			_	_				_			_
Ot	Steel pipe tip	Widening Section Insitu Concrete Shielding Wall	Shielding Wall Rebar	Steel arch support	Shotcrete Permanent Lining	Primary Lining Rock bolting	Permanent Lining Rebar	Shotcrete Primary Lining	Main Accelerator Tunnel Insitu Concrete Shielding Wall	Roadbed Permanent Lining	Insitu Permanent Lining

CLIC Drive Beam 380GeV

A1-A5 ReCiPe 2016 Midpoint (H) Impact Categories

CLIC Drive Beam 380GeV | Relative contribution of each A1-A5 stage to total environmental impact

ILC 250GeV

A1-A5 ReCiPe 2016 Midpoint (H) Impact Categories

ILC 250GeV | Relative contribution of each A1-A5 stage to total environmental impact

Baseline and projected electricity mix **CLIC & ILC**

Japan 2021 and projected 2030 electricity mix (TWh)

Reference: Our World in Data, France 2022

Reference: Energy pathways 2050 key results, RTE 2021

Reference: Our World in Data, Japan 2021

Reference: 6th Strategy Energy Plan, METI 2021

CLIC Drive Beam 380GeV

Tunnels reduction opportunities

41% possible A1-A5 GWP reduction

A1-A5 Tunnels GWP (tCO₂e)

ILC 250GeV

Tunnels reduction opportunities

42% possible A1-A5 GWP reduction

A1-A5 Tunnels GWP (tCO₂e)

*Operational estimates provided by CERN. Based on a projected electricity mix in 2050 (50% nuclear, 50% renewables).

3TeV

Annual CO₂e of operations is 17%of embodied carbon A1-A5 GWP is equivalent to 0.6 decades of running accelerator

CLIC Drive Beam

A1-A5 Global Warming Potential (tCO₂e)

380GeV

Annual CO_2e of operations is 6% of embodied carbon A1-A5 GWP is equivalent to 1.7 decades of running accelerator

1**.5TeV**

Annual CO₂e of operations is 12%of embodied carbon A1-A5 GWP is equivalent to 0.8 decades of running accelerator

Parametric Visualisation

In development

Summary of LCA

• Evaluates the environmental impact of CLIC and ILC for the first time

ARUP

- Establishes a baseline quantification with hotspots and reduction opportunities identified
- Provides a stepping stone for optimising design based on GWP impact

- A1-A5 Global Warming Potential results:
 - ~125-500 ktCO2e for CLIC Drive Beam 380GeV-3TeV
 - ~290 ktCO2e for CLIC Klystron 380GeV
 - ~270 ktCO2e for ILC 250GeV
- A1-A3: Key drivers are concrete and steel, driven by the scale of the proposed schemes.
- A4-A5: Use local manufacturers to reduce transport distances. Energy transition has less of a significance on construction GWP compared to A1-A3 possible reductions and optimisations.
- GWP is one indicator, but the impact of other environmental indicators and reduction opportunities should be recognised

Key Takeaways Future Considerations • Challenge the community to target ambitious aims to drive down the environmental impact and carbon footprint.

ARUP

- **Technical:** With the baseline established, design optimisation based on GWP and other impact categories can be made based on biggest impact; identify achievable technological advances; consideration of non-CE materials and equipment e.g. services, cooling.
- Socio-economic: Consideration of whole life impacts is important to provide the full picture, from construction to end of life. Consideration of the cost impact of carbon.
- **Governance:** Procurement for low carbon. Update the LCA to keep relevant with the expected changing net-zero aligned policies, legislations and governance that will drive standards.