1.3 GHz RF-Dipole Crabbing Cavity System for International Linear Collider

Suba De Silva Jean Delayen, Bob Rimmer

Center for Accelerator Science

Old Dominion University

and

Thomas Jefferson National Accelerator Facility

Outline

- Crabbing System for ILC
- ILC Crabbing System Specifications
- EM Design
 - RF Parameters
 - HOM Damping
- Mechanical Analysis
 - Stress Analysis
 - Tuning Sensitivity
- Fabrication Plan
- Cryomodule Layout
- Summary and Next Steps

Crabbing System for ILC

- Baseline design: \sqrt{s} = 250 GeV with upgrade to 1 TeV
- Luminosity: 1.35/2.7×10¹⁰ cm²s⁻¹
- Crossing angle: 14 mrad
- Transverse voltage:

Jefferson Lab

Beam Energy	250 GeV			1 TeV		
<i>f</i> ₀ [GHz]	1.3	2.6	3.9	1.3	2.6	3.9
Tot. V _t [MV	1.845	0.923	0.615	7.4	3.7	2.5

Parameter	Value
Center of mass energy [GeV]	250/1000
Crossing angle [mrad]	14.0
β _{cc} [m]	23.2
β _{IP} [mm]	13.0/22.6
RMS bunch length ($\sigma_{ m z}$) [mm]	0.3/0.25
RMS horizontal beam size (σ_x^*) [nm]	729.0/481.0

Requirements for ILC 1.3 GHz Crab Cavity

- Operating frequency 1.3 GHz
 - Transverse voltage 1.845 MV (125 GeV) and 7.4 MV (for 500 GeV)
- Maximum fields E_p < 45 MV/m and B_p < 80 mT
- Total impedance threshold:
 - $Z_x = 48.8 \text{ M}\Omega/\text{m}$ and $Z_y = 61.7 \text{ M}\Omega/\text{m}$
- Transverse kick factors:
 - $k_x < 1.6 \times 10^3 \text{ V/pc/m}$ and $k_y < 1.2 \times 10^2 \text{ V/pc/m}$
- Tuning specifications 100-180 kHz
- Dimensional constraints:
 - Minimum beam aperture = 25 mm
 - Total cryomodule length < 3.8 mm
 - Parallel beam pipe separation = 197 mm

ILC Crab Cavity Specifications (V19) – P. McIntosh

Parameter		-TDR	10Hz	1 Te	eV CoM	Spec ²
		ication	Upgrade ^{1,2}			
Beam Energy (GeV) e-		125			500	
Crossing Angle (mrad)			14			
Installation site (m from IP)			14			
RF Repetition Rate (Hz)	1	5	10		4	
Number of bunches	13	12	2625		2450	
Bunch Train Length (ms)	7	27	961		897	
Bunch Spacing (ns)	55	54		36	6	
Beam current (mA)	5	.8	8.75		7.6	
Operating Temp (K)			2			
Cryomodule installation length (m)		3.8 (i	ncorporating	g gate va	lves)	
Horizontal beam-pipe separation (m)	0.1967 (c	entre) ±0	.0266 (each e	end of ir	nstallati	on length)
Cavity Frequency (GHz)	3.9	2.6	1.3	3.9	2.6	1.3
Total Kick Voltage (MV)	0.615	0.923	1.845	2.5	3.7	7.4
Max Ep (MV/m)	45					
Max Bp (mT)	80					
Amplitude regulation/cavity (% rms)	3.5 (for 2% luminosity drop)					
Relative RF Phase Jitter (deg rms)			0.069)		
Timing Jitter (fs rms)		49 (for 2% lumir	osity dr	op)	-
Max Detuning (kHz)	240	170	100 - 180	240	170	100 - 180
Longitudinal impedance threshold (Ohm)		Cavi	ty wakefield	ldepen	dent	
Trasverse impedance threshold (MOhm/m) (X,Y)			48.8, 63	1.7		
Cavity field rotation tolerance/cavity (mrad rms)		5.2 (for 2% lumi	nosity d	rop)	
Beam tilt tolerance (H and V) (mrad rms and urad rms))	0.35, 7	.4 (for 2% lui	minosity	/ drop)	
Minimum CC beam-pipe aperture size (mm)	>25 (same as FD magnets)					
Minimum Exraction beam-pipe aperture size (mm)	20					
Beam size at CC location (X, Y,Z) (mm,um,um)	0.97, 66, 300					
Beta function at CC location (X, Y) (m,m)	23200, 15400					
Horizonal kick factor (kx) (V/pC/m)	<< 1.6 x 10 ³					
Vertical kick factor (ky) (V/pC/m)	<< 1.2 x 10 ²					
CC System operation	assume CW-mode operation					

ILC Crab Cavity Designs

- Several crab cavity designs have been proposed •
- Down Selection Review on Crab Cavity Design April 4-6, 2023 KEK, Japan
 - Two crab cavity designs were down selected
- 2 Final Designs ٠
 - RF-Dipole Cavity (RFD) [1.3 GHz] from ODU/JLab
 - Quasi-waveguide Multi-cell Resonator (QMiR) [2.6 GHz] from Fermilab •
- 2 selected designs will go into prototype production in the 18 month Pre-Lab phase

1.3 GHz RFD Cavity Design

- Optimized the pole shape (pole height and length):
 - To achieve peak surface field requirements of $E_p < 45$ MV/m and $B_p < 80$ mT

Cavity Dimensions (rf volume)	Value
Pole separation [mm]	25
Beam aperture [mm]	50
Cavity Length [mm] (flange-to-flange)	310
Cavity Diameter [mm]	99.4
Pole Length [mm]	85
Pole Height [mm]	31.5
Angle [deg]	22.5

Jefferson Lab

	250 GeV	1 TeV
Max V _t per cavity [MV]	1.36	1.36
Total V _t [MV]	1.845	7.4
Number of cavities	2	6
V _t per cavity [MV]	0.9225	1.234
V _{t,max} / V _{t,operational}	1.47	1.10

Property	Value
Operating frequency [GHz]	1.3
1 st HOM [GHz]	2.089
$E_{\rm p}/E_{\rm t}^*$	3.81
$B_{\rm p}/E_{\rm t}^*$ [mT/(MV/m)]	6.78
$B_{\rm p}/E_{\rm p}$ [mT/(MV/m)]	1.78
G [Ω]	129.88
<i>R/Q</i> [Ω] (V ² /P)	439.51
$R_{\rm t}R_{\rm s}\left[\Omega^2\right]~({\rm V}^2/{\rm P})$	5.71×10 ⁴
[*] Reference length $V/E_t = \lambda/2$ [mm]	115.3
V _t max per cavity [MV]	1.36
E _p [MV/m]	44.94
<i>B</i> _ρ [mT]	79.96
V _t per cavity [MV] (@ 125 GeV)	0.9225
Stored energy (U) [J]	0.237
$P_{\rm diss}$ [W] (for $R_{\rm s}$ = 30 n Ω)	0.45
Q_0 (for $R_s = 30 \text{ n}\Omega$)	4.33×10 ⁹

HOM Impedances

HOM₂

OMINION

FPC

HOM1

Accelerator Science

- Damping using 2 TESLA type HOM couplers
- Total impedance threshold (requirements): $Z_x = 48.8 \text{ M}\Omega/\text{m}$ and $Z_y = 61.7 \text{ M}\Omega/\text{m}$
- Impedance threshold per cavity: $Z_x = 8.13 \text{ M}\Omega/\text{m}$ and $Z_y = 10.28 \text{ M}\Omega/\text{m}$ (6 cavities)
- Impedance threshold per cavity: $Z_x = 24.4 \text{ M}\Omega/\text{m}$ and $Z_y = 30.85 \text{ M}\Omega/\text{m}$ (2 cavities)
- Dampers placed on one end of the cavity: no interference with the FPC

Stress Analysis

- Analysis at 2.2 atm external pressure
- Nb material properties at room temperature for MG
 - Young's modulus 88.7 GPa
 - Poisson's ratio 0.38
- Cavity thickness 3 mm
- Allowable stress < 39 MPa (For MG)
 - Maximum stress is 24.6 MPa

ATI MG Nb Specimens							
Temperature [K]	Sample Processing	Young's Modulus [GPa]	0.2% Proof Strength [MPa]	Tensile Strength [MPa]	Elongation [%]		
300	Annealed	88.7 ^{±9*}	39±2	123 ^{±5}	25.3 ^{±3}		
300	ASR	89.7±6	43±4	145 ^{±7}	23.9±4		
4.2	Annealed	114.0 ^{±11}	283 ^{±34}	651 ^{±60}	7.5 ^{±2}		
4.2	ASR	115.4 ^{±14}	284 ^{±22}	351 ^{±28}	1.8 ^{±1}		

Accelerator Science

Tuning Sensitivity Analysis

- Nb material properties at cryo temperature for annealed MG
 - Young's modulus 114 GPa (1.65×10⁷ psi)
 - Allowable stress < 283 MPa (For MG)
- Required tuning range 100-180 kHz

Total	Tuning	Max. Tuning	
Displacement	Sensitivity	Range	
0.34 mm	9.5 MHz/mm	±3.24 MHz	

- Sensitivity: 9.5 Hz/nm
- Tuning range of 200 kHz corresponds to a total displacement of 22 μm
- Loaded bandwidth of 87 Hz ($Q_L = 1.5 \times 10^7$) corresponds to a total displacement of 9.2 nm
- Tuning force (for 200 kHz) per side 175 N
- Can be implemented with a piezo tuner

GPa

0.12 0.08

RF-Dipole Crabbing Cavities

960 MHz

Cavity Fabrication

- Cavity body thickness 3mm
- Thickness of beam pipes, HOM cans 2 mm
- HOM hooks and probes Nb
- FPC and FP probes Cu
- Cavity flanges SS 316LN with Cu gaskets

- HOM coupler fabrication
 - TESLA HOM couplers used in XFEL, LCLS-II, CEBAF-C100, and ILC
 - Well understood fabrication process

Center body will be machined and EDM out of Nb ingot

- Better control over dimensions and tolerances
- Reduced number of welds
- Reduces number of dies and fixturing
- Allows for variable thickness

Conceptual He Vessel and Cryomodule Design

- 2 cavities in a single cryomodule
 - Second beam pipe 20 mm beam pipe
 - Total achievable 2.72 MV (1.36 MV V_t per cavity)
- Design concept follows JLab C100 cryomodule
- FPC, HOM couplers can be placed outside the He vessel
- Cryomodule length ~1.5 m and diameter < 1 m

11

Center for

Accelerator Science

Summary and Next Steps

- RFD cavity was down selected as one of the two cavities to be prototyped in the next phase of crabbing cavity development for ILC
- Basic design is completed; will do detailed analysis to finalize the cavity dimensions
 - Wakefield analysis
 - Multipacting analysis with HOM dampers
- Full engineering design and develop a detailed fabrication plan
- Fabrication of the prototype cavity with HOM dampers
- We have had great collaborations with LHC HiLumi and EIC with SLAC, BNL, Fermilab, CERN, TRIUMF
- Looking forward to collaborations on developing the ILC crabbing systems

THANK YOU !!!

Features of RF-Dipole Cavities

- Compact design
- Fundamental deflecting/crabbing mode has the lowest frequency
 - No LOMs, no need for notch filter in HOM coupler for LOM
 - Nearest HOM widely separated (> 1.5 fundamental)
- Low surface fields and high shunt impedance
- Good balance between peak surface electric and magnetic field
- Good uniformity of deflecting field due to high degree symmetry
- Multipole components can be managed by shaping the geometry of the poles.
- HOM couplers located in area of low field in fundamental mode

Fundamental Power Coupler

- Coupling using coaxial antenna
 - Similar to LCLS II power coupler
- Beam current: $I_{\rm b}$ = 8.75 mA
- Design parameters:
 - Beam offset: $\Delta x = 0.5 \text{ mm}$
 - Microphonics: δf = 50 Hz
- Cavity parameters:
 - $R/Q (V^2/P_{diss}) = 444.8 [\Omega]$
 - Total V_t for 125 GeV = 1.845 [MV]
 - *V*_t per cavity = 0.9225 [MV]
- FPC Coupling:

Jefferson Lab

Parameter	Value
Q _{ext}	1.5×10 ⁷
RF Power at the cavity [W]	154
RF heating at Cu probe [W]	0.65

- Coupling using hook coupler
- Field probe:
 - $Q_{\text{ext}} < 1.0 \times 10^{10}$
 - Extract ~200 mW at 0.9225 MV

Multipacting Analysis

- Resonant particles traced for 50 rf cycles with impact energy 20-2000 eV
- Simulated for particles generated at a 1/8th surface area
- Multipacting barrier at ~0.35 MV is similar to other barriers seen in other RFD cavities, and is fully processable
 - Doesn't reappear after fully processed

Final location of the resonant particles after 50 rf cycles

• Multipacting analysis including couplers remains to be done

Pressure Sensitivity

- Nb material properties at room temperature for MG
 - Young's modulus 88.7 GPa (1.29×10⁷ psi)
 - Poisson's ratio 0.38
- Cavity thickness 3mm
- Cavity constrained at beam pipe ports and FPC
- Stiffening at poles can reduce pressure sensitivity
 - Or with variable thickness at the poles
- Frequency shift at 2 K (24 torr) = -15.7 kHz

11

Lorentz Detuning

- Nb material properties at cryo temperature for annealed MG
 - Young's modulus 114 GPa (1.65×10⁷ psi)
 - Poisson's ratio 0.38
- Cavity thickness 3mm
- Cavity constrained at beam pipe ports and FPC
- Lorentz detuning can be reduced by tuner
 - Tuning by push/pull at top and bottom of the cavity

Cavity Type	Cavity Type [kHz/(MV) ²]		Δ <i>f</i> [kHz]	
1-cell	-3.67	1.35	6.7	

List of Nb Material

Cavity Parts (Nb)	Material Type	Dimensions [mm]	Qty	Weight [kg]
Center body	MG forged ingot	Ø 110 mm × 140 mm	1	11.4
End caps	Disc	Ø 130 mm × 3 mm	2	0.7
Beam tubes	Sheets	115 mm × 180 mm × 2 mm	2	0.8
HOM cans	Sheets	65 mm × 148 mm × 2 mm Ø 45 mm × 2 mm	2	0.4
FPC tube	Sheets	84 mm × 148 mm × 2 mm	1	0.3
FP tube	Rod	Ø 25 mm × 70 mm	1	0.3
FPC & HOM transitions	MG forged ingot	Machined from remaining	3	0
HOM hooks and probes	MG forged ingot	material of the center body	2	0
Total				13.9

