New Nb Material for Cost Saving

Akira Yamamoto (KEK-CERN)

In cooperation with

A. Kumar, T. Dohmae, T. Saeki (KEK), G. Myneni (BSCE), G. Ciovati, P. Dhakal, R. Rimmer (JLab),

M. Carl, A. Fajardo, and N. Lannoy (ATI)

LCWS-2023, Acc. SR Session, at SLAC, Sept. 16, 2023

1

Motivations

- The best cost-effective SRF cavity production:
 - Quality:
 - Clean Nb and RF surface critically important,
 - Cost:
 - **Simple** production process inevitably required.

• Efforts for a solution:

- <u>Fine Grain (FG)</u> :
 - Mechanically best, but contamination due to forging and rolling
- \rightarrow <u>Large Grain (LG)</u>:
 - Best for cleanness and cost reduction, but mechanically not stable resulting in HPGS code not applicable
- \rightarrow <u>Medium Grain (MG)</u>:
 - Optimized for cleanness, mechanical stability, cost reduction, and applicable to high pressure gas safety (**HPGS**) regulations.

References

- A. Yamamoto et al., "Ingot Nb based SRF Technology for the International Linear Collider", in Proc. Science and Technol-ogy of Ingot Niobium for Superconducting Radio Frequency Applications, Virginia, USA, Dec. 2015, AIP Conf. Proc. 1687, 030005-1 – 03005-6.
- **A. Kumar et al.,** "Mechanical property of directly sliced me-dium grain niobium for 1.3 GHz SRF cavity", JACOW-SRF-2021-MOPCAV004.
- T. Dohmae et al., "FABRICATION OF 1.3GHz SRF CAVITIES USING MEDIUM GRAIN NIOBIUM DISCS DIRECTLY SLICED FROM FORGED INGOT*, JACoW-SRF2021-MOPCAV012.
- G. Myneni et al, "Medium Grain Niobium SRF Cavity Production Technology for Science Frontiers and Accelerator Applications", presented at SnowMass'21 AF-7, Sugroup RF,2022, and to be published in JINST, 2023.

2023-5-16

Production of Nb Discs/Sheets for 1.3 GHz SRF Cavities

Courtesy: Tokyo-Denkai

Process flow of the industrial Nb production

2023-5-16

FG

2023-5-16

LG

Process flow of the industrial Nb production

MG

2023-5-16 Uniformity of Nb material is achieved by Medium-Grain (MG) structure.

Summary of Nb Sheet/Disc Fab.Technologies for SRF

	Fine Grain (<mark>FG</mark>) Rolled Nb sheets	Medium Grain (MG) Forged Ingot Nb discs	Large Grain (L <mark>G</mark>) Ingot Nb discs
Fabrication process	Up to fourteen manufacturing steps	EB melted ingot w/ larger dia. Forging required dia to be sliced	EB melted ingot of required diam. to be sliced
ASTM Grade Grain size	~ 5 ~ < 50 µm	0 – 3, (1~2 av.) < 1 mm	n/a >1 cm
Cleanness	Possible prone to contamination due to rolling	clean surface with direct slicing	Proven clean surface with no-forging and direct slicing
Mechanical properties	Very Uniform	Reasonably uniform	Non uniform, widely distributed
Cost	Expensive	Cost advantage	Best cost advantage

Courtesy: ATI

Properties of MG Nb disc realized in cooperation with ATI

Table 1. Material proper	ties of MG Nb material produced by ATI.	0.02 in th (50 mm)
Chemical Composition (%)	Other properties	
Ta : < 0.01%	Dimensions: 260 m (dia.), 2,8 mm (t)	
W : < 0.003 %	RRR : > 450	
Ti, Si, Mo, Fe : < 0.003%	Recrystalization: 100 %	Edge
Ni : < 0.002 %	Grain size : 0.2 ~ 0.3 mm (ASTM: 1 ~ 2)	
H ₂ : < 0.003 %	Hardness (HV0.1) : 40 ~ 44	Prob No
C : < 0.002 %	Mechanical Strength :	5 7 3 ("
N ₂ : < 0.002 %	Ultimate strength (RT) > 141-146 Nmm ⁻²	Mid. Radius
O ₂ : < 0.004 %	Yield strength (RT) > 56-61 Nmm^{-2}	Grain Size: $0.2 \sim 0.3$ mm

Special Thanks for the Cooperation by ATI !

A Reference: Courtesy: ATI and G. Myneni, Comparison of NbGr1 & RRR Nb

RRR Nb (MG) Nb Gr1 (MG) **Parameters** Measured Measured 450 ~ 100 RRR 523 100 % 100 % **Re-crystalization** Grain size (ASTM) 0.5 - 5 2, 1, 1.5 Edge, Mid., Center Grain size (mm) 0.2, 0.25, 0.21 0.05 - 0.3 Edge, Mid., Center 61 MPa Y.S.-0.2% (RT) ~ 67 MPa > 147 MPa 141 MPa T.S. (RT)

2023-5-16

Courtesy: A. Kumar

Room temperature property Comparison

Mechanical strength of MG-Nb achieved the criteria of HPGS regulation for KEK/STF-Cavity

Courtesy: A. Kumar

Room temperature property Comparison

Mechanical strength of MG-Nb achieved the criteria of HPGS regulation for KEK/STF-Cavity

Low Temperature Property Comparison

- Tensile Strength of MG-Nb at LHe-T is better than LG-Nb.
- Brittleness and low elongation of MG-Nb are not observed at LHe-T after annealing.

2023-5-16

Ashish KUMAR

Courtesy: A. Kumar

Summarized Results

ATI MG Nb Specimens

Temperature [K]	Sample Processing	Young's Modulus [GPa]	0.2% Proof Strength [MPa]	Tensile Strength [MPa]	Elongatio n [%]
300	Annealed	88.7 ^{±9*}	₃₉ ±2	123 ^{±5}	$25.3^{\pm 3}$
300	ASR	89.7 ^{±6}	₄₃ ±4	145 ^{±7}	$23.9^{\pm 4}$
4.2	Annealed	$114.0^{\pm 11}$	283 ±34	₆₅₁ ±60	7.5 ^{±2}
4.2	ASR	115.4 ^{±14}	284 ±22	351 ±28	1.8 ^{±1}

* Error is standard deviation.

2023-53-68h KUMAR

LCWS-2023, SLAC

14 **14**

Courtesy: A. Kumar

Summary of Mechanical Test Results

- ATI MG Nb's_mechanical properties does clear the mechanical strength criteris required for HPGS code for KEK-STF SRF Cavity.
- **However**, elongation of the material needs to be improved for better yield with press forming.
- MG Nb room temperature properties are closer to FG Nb.
- Low temperature behavior of MG Nb is closer to LG Nb
- Elongation is same as FG and LG Nb at low temperature; however, some specimens did show lower elongation of 5-6% too.
- First Serration usually starts at 250 to 300 MPa stress.

2023-5-16 Ashish KUMAR

LCWS-2023, SLAC

15

MG Cavity Fabrication: MG-Nb Disc successfully press formed to half-cells,

Courtesy: T. Dohmae

An Issue in Press-Forming Process

- settled with enlarging the disc, inner-hole diameter prior to press-forming

	Disc #	Hole	Annealing	Forming	Purpose
		Diame [mm]	ter]	Results	
<u> </u>	#6	56	No	Light crack	R18
I	#7	56	No	Light crack	R18
	#8	56	Yes	Deep crack	Test
$\boldsymbol{\mathcal{C}}$	#9	59	Yes	No crack	Test
く (#10	58	Yes	No crack	Test
C	#57	60	Yes	No crack	R18b
	#58	58	No	Light crack	R18b
	#59	56	No	Deep crack	Test
	#60	58	No	Deep crack	Test

2023-5-16

Courtesy: T. Dohmae

Evaluation of MG Surface Roughness Issue

Surface roughness				
	Ra [µm]	Rz [µm]		
Disc	0.7	-		
Formed	2.6 ~ 5.7	11~28		
Polished	2.6 ~ 3.7	2.6 ~ 11		
EP (100µm)	1.1 ~ 1.5	3.4 ~ 6.7		

Inner surface around equator

3D data of surface

Surface

Became rough after forming.

(especially at curvature regions)

R18: Mechanically polished (equator)

2023-5-16

19

MG <u>1-Cell</u> Cavity RF Performance compared with FG 1-cell Cavity

Summary of Features for the FG, MG, LG Nb

	Process	FG	MG	LG
fining	1. Primary material	\checkmark	~	\checkmark
	2. Pressing	\checkmark	>	\checkmark
Refi	3, 4. EB Melting (multiple)			
	5. Separating Ingot			
Sheet/Disc forming	6. Forging to reduce (thickn. or dia.)	(thick.)	✓ (diam.)	-
	7. Milling		-	-
	8. Rolling		-	-
	9. Polishing		-	-
	* Annealing			-
	10. Rolling		-	-
0,	11. Cutting (sheet)		-	-
	* Direct Slicing (disc)	-		
	12. Annealing			
ng	13. Leveling	>	-	-
Finishi	14. Chemical polish.	>	>	\checkmark
	15. Inspection	>	>	\checkmark
Feature	 Production cost Cleanness Mech. forming 	High (1) Modest Best	Low (~2/3) Good Good	Lowest (<2/3) Good 20 Modest

2023-5-16

ITN WPP-1 Plan: FG + MG Cavities, Indust. Product. Readiness

- Pre-production with 1-cell cavities to establish the best process including:
 - Nb sheet and SRF cavity production method
 - Inner surface treatment recipe
- Production of > 20 (~3 x 8) x 9-cell cavities for industrial-production readiness:
 - Globally common design with compatible High Pressure Gas Safety (HPGS) regulation
 - Best production process to be optimized in each region
 - Cavity performance expected: $E_{acc} = \langle 35 \text{ MV/m} \rangle (+/-20\%), Q_0 = 1.0 \times 10^{10}, \text{ Yield} = \geq 90\%$
- RF performance yield to be re-confirmed (including 2nd pass and further (3rd ...)

2023-5-16

WP-prime 3: Crab Cavity Development

2023-5-16

Summary

- **MG Nb** material has been **successfully developed** to qualify RF performance, qualified for 1.3 GHz SRF cavity application.
- MG Nb disc may save the production cost to be ~ 2/3 of the FG Nb sheet production cost.
- The **RF performance** has been **demonstrated** with a **1-cell** 1.3 GHz SRF cavity satisfying the ILC SRF cavity specification. **9-cell in progress.**
- The **industrial production readiness** for 1.3 GHz 9-cell cavities is to be demonstrated in the **ILC-ITN global cooperation, and**.
- For the future ...

2023-5-16

A Special Topic !, toward the Future Cost Saving ! 1.3 GHz, 1-cell Cu full-seamless cavity with <u>new hydroforming</u>

to be combined with thin **Nb/Nb3Sn** coating

-- KEK-CERN Cooperation --

original tube Dice Loading 4.006e-01 3.560e-01 3.115e-01 force 3.115e-01 2.670e-01 2.225e-01 1.780e-01 1.335e-01 8.901e-02 4.451e-02 1st step Inner 🛁 pressure Dice Loading 5.331e-01 4.798e-01 force 4.265e-01 3.732e-01 Inner 🛁 3,198e-01 2.665e-01 pressure 2.132e-01 2nd step 1.599e-01 1.066e-01 5.331e-02 0.000e+00 ← Succeeded. Hydroformed cavity last week (in 2 days) **Seamless Cavity** Simulated by CERN Realized by **KEK** and Hydroforming Process,

proposed by M.Y. 2023-5-16 Simulation and material characterization, by M. Garlashce et al. at FCC-week and at SRF2023, Hydroforming details will be presented by M. Yamanaka et al., at SRF2023

Courtesv:

- M. Yamamaka

- M. Carlasche