Calorimetry for Higgs Factory Detectors

Adrián Irles* *AITANA group at IFIC – CSIC/UV

Financiado por la Unión Europea NextGenerationEU

GENERALITAT

VALENCIANA

Universitats, Ciència

i Societat Digital

AITANA MATTER AND TECHNOLOGY

This is an **incomplete overview** of Calorimetry R&D

This is not a review of all the detector proposals for all Higgs Factories.

Calorimetry for Higgs Factories: physics drivers

Higgs Factories

e+e- colliders

Higgs Factories

Higgs Factories proposals: Differences and similarities (for calorimetry)

- Higher energy reach implies higher energy for produced particles and jets
 - direct impact on crucial design parameters of calorimeters such as thickness, absorber material, granularity
- Linear colliders have bunch trains, circular colliders not.
- Bunched beam structure allows
 - for power pulsed electronics:
 - Highly integrated
 - Reduced of cooling systems
 - Triggerless readout

compactness

Check R.. Poeschl talk: Highly Granular Calorimeters - Impact of different Higgs Factory Options

7

Seeking the lowest JER

Separation of hadronic final states of heavy bosons:

Requires jet energy resolution of ~ 3.5% over a wide energy range

- Very high rates that require
- (e.g. 2x better than ALEPH / ATLAS)

Complicated topologies: τ - reconstruction

- Flavour physics (low energy tau's)
- Direct pair production by Z, H, top decays, ... (high energy taus)
- Require excellent tracking, vertexing and PID capabilities and... good ECAL resolution and high granularity in calorimetry

adrian.irles@ific.uv.es

 Results in close-by / overlapping electromagnetic and hadronic showers

Particle Flow Algorithms

Aim: perform single particle reconstruction and use the best information in our detector estimate the energy

Example: jet created by a proton "traditional" detector : $(\Delta E)^2 \sim (\Delta E_{ECAL})^2 + (\Delta E_{HCAL})^2$ **Particle Flow detector:** $\Delta E \sim \Delta E_{track}$

CWS

High granular calorimetry

Design of a PF detector

adrian.irles@ific.uv.es

Holistic approach:

- Tracking, vertexing, PID detectors, calorimeters, coils, etc.. all systems are at the service of the event reconstruction
- Maximal acceptance minimizing cracks, dead material, endcap-barrel transitions...
- Forward calos as close as possible to the IP.
- Minimum material in front of the calorimeters,
- Low material budget tracking systems.
- Calorimeters **inside a large magnetic field** (no coil between trackers and calos)
- Highly compact calorimeters (cost and physics)
 - **Readout is highly integrated**: data processing done "in" the detector
- Highly Granular calorimeters
 - Between 10⁶-10⁸ channels (barrel)

PFA: Technological premises

Highly integrated (very) front end electronics

Size 7.5 mm x 8.7 mm, 64 channels

- Small scinitllating tiles
- (Low noise) SiPMs

Analogue measurement

- On-chip self-triggering
- Data buffering
- Digitisation
 ... all within one ASIC
- Common developments on different CALICE projects

Power pulsed electronics to reduce power consumption...

Compactness -> no space left for active cooling systems

Miniaturisation of r/o devices

Self trigger of individual cells below MIP level

Large surface detectors Si Wafer

RPC layers

Many things that look familiar to you today were/are pioneered/driven by CALICE

adrian.irles@ific.uv.es

PFA technological premises: sandwich calorimeters

SiW-ECAL

SiW-ECAL 15 layers 18×18 cm² 0.5×0.5 cm² Si cells 2.8+5.6 mm W (21 X₀) 100 kg, 0.4×0.4×80 cm³ 15k channels

EUDET layout Prototype from Hamamatsu Production of a large scale prototype (adapted to LUXE)

Proposed for the ECAL of: ILD, CLICd CLD...

Check <u>R. Poeschl</u> and <u>A.I.</u> talks in Track 3 session

17

Sc-ECAL

Production of a large scale prototype Large scale TB campaign ongoing

Proposed for the ECAL of: ILD, CEPC detector

- 30 layers, 22cm*22cm, 6300 channels
- 22X0
- 300 kg
- Strips 5 mm x 45 mm x 2 mm³

Effective granularity of 5x5mm² (but with x10 less channels) → relevant for power consumption control

Digital ECAL based on MAPS

- Primary experimental context: ALICE FOCAL, Higgs Factories
- A MAPS-based digital Silicon-Tungsten ECAL,
 - building on current DECAL and EPICAL projects, partially integrated in CALICE
 - Also relevant activities (and interest) at SLAC, U Oregon with connections to CERN

Digital ECAL based on MAPS

- Primary experimental context: ALICE FOCAL, Higgs Factories
- A MAPS-based digital Silicon-Tungsten ECAL,
 - building on current DECAL and EPICAL projects, partially integrated in CALICE
 - Also relevant activities (and interest) at SLAC, U Oregon with connections to CERN

Forward Calorimetry (extreme compactness)

ollaboration Beampipe LHCal BeamCal Beampipe, second cone LumiCa Support tube

BeamCal:

GaAs sensor

LumiCal: Silicon sensor

- LumiCal for precise luminosity measurement (Counting Bhabhas)
- BeamCal for fast luminosity measurement (using beamstrahlung)
- Technology choice: Si or GaAs/W sandwich calorimeters
- 1 X0 absorber thickness per layer, 20 (30) layers in ILC (CLIC).
- Recent progress:
 - investigation of new GaAs sensors with integrated signal routing -similar signal size to silicon sensor
 - Wireless DAQ?

adrian.irles@ific.uv.es

Production of a large scale prototype (adapted to LUXE)

21

Sc Analogue HCAL

CALICO

0

:III:

- Granularity optimised for CEPC. (40x40 mm²)
- ▶ 38-layer scintillator-steel HCAL prototype assembled,
- Recent beam test with Sc-ECAL at CERN.

38-layer HCAL prototype, 30*30 mm² Extensive beam test campaigns (including CMS-HGCAL and common beam tests with SiWECAL)

Large scale Prototypes existing. Proposed for the HCAL of: ILD,, SiD CLICd CLD, CEPC

adrian.irles@ific.uv.es

CWS

(Semi) digital Hadronic calorimeters

semi-digital	digital
1*1 cm ²	1*1 cm ²
RPCs (or µMegas)	RPCs (or GEMs)

48-layer HCAL prototype, ~440000 readout channels (SemiDigital)

adrian.irles@ific.uv.es

CWS

Large scale prototypes existing. R&D on timing, electronics

Proposed for the HCAL of: ILD,, SiD

LAr & Dual Readout Calorimetry

LAr (for FCC)

LAr

- Noble-liquid calorimetry: High intrinsic stability (demonstrated at ATLAS)
 - Pedestal stability < 100 keV (!)
 - Gain stability 2.6x10⁻⁴
- Aim for Higgs factory: reach 10 times higher granularity than in ATLAS
 - longitudinal segmentation: 12 layers in baseline design
- **Optimisation** of the design for FCC-ee ongoing

Further ongoing investigations

- Requires electrodes as multi-layer PCBs
- Thin cryostat
- High-density feed-through

adrian.irles@ific.uv.es

Low-noise readout electronics (warm or cold?)

2500

Dual Readout Calorimetry

- Idea: measure two signals simultaneously to determine electromagnetic fraction of hadron shower
 - Improve energy measurement by correcting with (known) e/h of calo
- Measure simultaneously
 - Scintillation signal (S)
 - Cherenkov signal (Q)
- Calibrate both signals with electrons

$$S = E [f_{em} + (h/e)_{S}(1 - f_{em})]$$

$$C = E [f_{em} + (h/e)_{C}(1 - f_{em})]$$

$$E = \frac{S - \chi C}{1 - \chi} \quad \text{with:} \quad \chi = \frac{1 - (h/e)_{S}}{1 - (h/e)_{C}}$$

Existing ECAL size prototype

Novel ideas for DR in Particle Flow -like detectors (see. S. Kunori& T. Takeshita's talks)

what more? precise timing?

The technologies offer good prospects on timing

- Actual prototypes can do up to 1 ns (keeping the power budget)
 - Silicon can go up to the ~30ps
 - Scintillator (small tiles with high lightyield, crystal) ~30ps
 - RPC multi-gap RPC have demonstrated ~60ps
 - (numbers for MIPs)

5D Particle Flow?

• What time resolution would be needed to improve particle flow reconstruction?

Particle Identiication using Time-of-flight

A first ECAL layer for TOF with ~10-50ps can help for pion/kaon/proton PID (with momentums of few GeV)

Note: Also readout electronics contributes to time resolution, and better resolution in general needs more power

Summary

- **Calorimeters are central** systems for future Higgs Factories
- Calorimetry for Future Higgs Factories is highly granular
- Detector concepts around PFA calorimeters well established; dual readout; also LAr

The technologies are mature

- Concepts being implemented for HL-LHC upgrades
- But further understand requirements and the match to possible technological solutions
- (example: we need to fully establish the benefit (and requirements) for timing depending on technology)
- Many R&D concepts are tailored to linear colliders.
 - Adaptation to circular colliders requires further R&D

back-up

Particle Flow Calorimetry R&D

Pioneered by the **PFA Calorimeter** ECAL HCAL Tungsten Tungsten Iron analog digital analog digital Micro Silicon Scintillator MAPS Scintillator RPC GEM megas

Collaboration

More than 300 physicists/engineers from ~60 institutes and 19 countries coming from the 4 regions (Africa, America, Asia and Europe)

Most projects of current and future high energy colliders propose highly granular calorimeters

31

Particle Flow Algorithms

Calorimetry requirements

Ultracompactness: small Molière radius of calorimeters to minimize shower overlap Extreme high granularity

Calorimetry requirements

- Base the measurement on the subsystem with best resolution for a given particle type (and energy)
- Separation of signals by charge and neutral particles in the calorimeters
- **Maximal exploitation** of precise **tracking** measurement
 - "no" material in front of calorimeters
- ▶ Single particle separation

(some) Challenges

- Complicated topology by (hadronic) showers
- Overlap between showers compromises correct assignment of calorimeter hits

-> Confusion term

• Need to minimize this term as much as possible

Pandora: a Particle Flow Algorithm

A Multi-Algorithm Pattern Recognition Tool

J. S. Marshall: https://indico.in2p3.fr/event/7691/contributions/42712/ attachments/34375/42344/3_john_marshall_PFA_marshall_24.04.13.pdf

adrian.irles@ific.uv.es

- PandoraPFA: Complex multi-algorithm chain using pattern recognition for event reconstruction
 - Performs calorimeter hit clustering, topological associations, ...
 - Highly recursive: Find most accurate reconstruction scenario
 - Overall goal: Distinguish energy depositions originating from charged and neutral particles in calorimeters and avoid confusion among those

Others

ARBOR PFA

- Shower development topology in an imaging calorimeter reminds of a tree structure.
- Backward approach, from leaf to branches to tree with seeds often in the last layers

APRIL

≈ Arbor PFA with modified cluster merging for SDHCAL

Garlic

- Gamma reconstruction at a Linear Collider
- TICL (The Iterative Clustering)
 - a modular framework integrated and under development in CMS software (CMSSW) -> High Granular CMS
- Innovative Machine Learning approaches
 - Profit from the high granularity (x,y,z,E,t)
 - Coming soon(?)

High granularity calorimeters: more than "only" PFA

High granularity calorimeters: more than "only" PFA

- SDHCAL: Separation of 10 GeV between neutral hadron and charged hadron [CALICE-CAN-2015-001]
 More than 90% efficiency and purity for distances ≥ 15 cm
- SDHCAL using 6 variable discriminnating BDT for Particle Identification [JINST 15 (2020) P10009]

High granularity offers unprecedented capabilities to perform PID in the calorimeters

36

Technological solutions for final detector I

SiW Ecal

Analogue Scintillator HCAL and ECAL

Electronics height: 17mm max SPIROC2E, Tile, 3mm thick Polyimide Foil Robust Interface **BGA372** DIF CALIB and POWER UV LED Flexlead Connector mezzanine cards non-5 max absorber material: 5.4mm ~75 0.5 not in scale 100 **Reflector Foils** Central Interface Board-Cooling Pipe indiv. tile CIB (1.7mm thick) HBU, 0.75mm thick wrapping Cassette Bottom Plate SIPM, SMD CIB socket (~2.4mm) (Steel, 0.5mm thick)

Semi-conductor readout Typical segmentation: 0.5x0.5 cm² Optical readout Typical segmentation: 3x3cm²

Semi Digital HCAL

Gaseous readout Typical segmentation: 1x1cm²

Integrated front end electronics

No drawback for precision measurements NIM A 654 (2011) 97

adrian.irles@ific.uv.es

CMS HGCAL

- CMS calorimeter endcap will be replaced for HL-LHC by High-Granularity calorimeter
 - High granularity for pile-up rejection & particle flow
- synergy with high granularity calorimeter concepts developed for electron-positron colliders
 - silicon in the front and close to the beam pipe
 - ~620m² in ~30000 modules
 - ~6M Si channels, 0.5 or 1cm² cell size
 - scintillator tiles wherever radiation levels allow
 - ~400m² in ~4000 boards
 - ~240k scintillator channels, 4-30cm² cell size
- "Cassettes": multiple modules mounted on cooling plates with electronics and absorbers
- New challenges compared to e+e-
 - Radiation levels
 - Operation at -35° C
 - Data rates

CMS p-p collisions at 7 TeV per beam 1 MeV-neutron equivalent fluence in Silicon at 3000 fb

CMS HGCAL Status

- Needs to be ready for installation in 2026/27
- Finalising overall design
- Transition from R&D phase to production ongoing
 - First (close to) final silicon modules assembled
 - First (close to) final scintillator modules will be assembled in 2022
- Setting up full production and assembly infrastructure
 - Module assembly
 - · Cassette assembly
 - Endcap assembly
 - QC setups in all steps
- Valuable experience for the construction of a highly granular calorimeter → feedback to Higgs/EW/top factory detectors
- Higgs/EW/top factory calorimeters will have more than an order of magnitude more channels!

Dummy scintillator module