#### INTERNATIONAL WORKSHOP ON FUTURE LINEAR COLLIDERS



## Recent Developments in Detector Concept Studies

Jinlong Zhang For CLIC, ILD, SiD



May 15, 2023



## **ILC Experimental Environment**

| Energy       | Reaction                                                                                                                                                            | Physics Goal                                                                                                                            |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 91 GeV       | $e^+e^- \rightarrow Z$                                                                                                                                              | ultra-precision electroweak                                                                                                             |
| 160 GeV      | $e^+e^- \rightarrow WW$                                                                                                                                             | ultra-precision $W$ mass                                                                                                                |
| 250 GeV      | $e^+e^- \rightarrow Zh$<br>$e^+e^- \rightarrow t\bar{t}$                                                                                                            | precision Higgs couplings<br>top quark mass and cou-<br>plings                                                                          |
| 350–400 GeV  | $\begin{array}{c} e^+e^- \rightarrow WW \\ e^+e^- \rightarrow \nu \bar{\nu} h \\ e^+e^- \rightarrow f\bar{f} \\ e^+e^- \rightarrow t\bar{t}h \end{array}$           | precision $W$ couplings<br>precision Higgs couplings<br>precision search for $Z'$<br>Higgs coupling to top                              |
| 500 GeV      | $\begin{array}{c} e^+e^- \to Zhh\\ e^+e^- \to \tilde{\chi}\tilde{\chi}\\ e^+e^- \to AH, H^+H^-\\ e^+e^- \to \nu\bar{\nu}hh\\ e^+e^- \to \nu\bar{\nu}VV \end{array}$ | Higgs self-coupling<br>search for supersymmetry<br>search for extended Higgs<br>states<br>Higgs self-coupling<br>composite Higgs sector |
| 700–1000 GeV | $\begin{array}{c} e^+e^- \rightarrow \nu \bar{\nu} t \bar{t} \\ e^+e^- \rightarrow \tilde{t} \tilde{t}^* \end{array}$                                               | composite Higgs and top search for supersymmetry                                                                                        |

Lepton Colliders provide much cleaner experimental conditions, therefore, to maximize physics performance by pursuing ultimate detector performance

- much lower backgrounds
- much less radiation,







• Electronics switched on during > ~1ms of ILC bunch train and data acquisition

Bias currents shut down between bunch trains

- Much smaller beam spot and beam pipe
  - first tracking layer at ~1cm of the IP
- Pulsed beam structure
  - Power pulsed electronics  $\rightarrow$  low material budget
  - Triggerless operation → ALL events are recorded



## **ILC Detector Concepts**

- Initial concepts in early 90s, developed in the early 2000s
- LOIs in 2009 (4 concepts)
- ILD and SiD validated by International Detector Advisory Group
- ILC TDR 2013 including Detailed Baseline Design (DBD) of ILD and SiD

ILC is designed for two detectors in Push-Pull arrangement











## **ILC Detector Requirements**



Robust silicon vertexing and tracking system – excellent momentum resolution, live for single bunch crossings.

Highly segmented "tracking" calorimeters optimized for Particle Flow.

Compact design with 5T field.

Iron flux return/muon identifier - component of SiD self-shielding.



- Software reconstruction
- $\rightarrow$  Separation of clusters at particle level





## **ILD Baseline**





- Particle flow as the key design driver
- Excellent vertexing very close to the IP (~1cm)
- Hybrid tracking system optimized for excellent resolution at high energies and ultimate efficiency over a broad momentum range
- High granular calorimetry
- Up to and including the HCAL, all inside solenoidal coil of 3-4 T

IDR-L IDR-S



| Detector          | IDR-L  | IDR-S  |
|-------------------|--------|--------|
| B-field           | 3.5 T  | 4 T    |
| VTX inner radius  | 1.6 cm | 1.6 cm |
| TPC inner radius  | 33 cm  | 33 cm  |
| TPC outer radius  | 177 cm | 143 cm |
| TPC length (z/2)  | 235 cm | 235 cm |
| ECAL inner radius | 180 cm | 146 cm |
| ECAL outer radius | 203 cm | 169 cm |
| HCAL inner radius | 206 cm | 172 cm |
| HCAL outer radius | 334 cm | 300 cm |
| Coil inner radius | 342 cm | 308 cm |





# • Si D •

## **SiD Baseline**



- Compact high-field design
- All-silicon tracking
- B field 5 T, R<sub>ECAL</sub>=1.25 m
- Robustness against backgrounds
- Integrated design
- Designed for Particle Flow Algorithm (PFA)

| SiD BARREL      | Technology         | Inner radius | Outer radius | z max        |
|-----------------|--------------------|--------------|--------------|--------------|
| Vertex detector | Silicon pixels     | 1.4          | 6.0          | ± 6.25       |
| Tracker         | Silicon strips     | 21.7         | 122.1        | $\pm$ 152.2  |
| ECAL            | Silicon pixels-W   | 126.5        | 140.9        | $\pm$ 176.5  |
| HCAL            | Scintillator-Steel | 141.7        | 249.3        | $\pm$ 301.8  |
| Solenoid        | 5 Tesla            | 259.1        | 339.2        | $\pm$ 298.3  |
| Flux return     | Scintillator/steel | 340.2        | 604.2        | $\pm$ 303.3  |
| SiD ENDCAP      | Technology         | Inner z      | Outer z      | Outer radius |
| Vertex detector | Silicon pixels     | 7.3          | 83.4         | 16.6         |
| Tracker         | Silicon strips     | 77.0         | 164.3        | 125.5        |
| ECAL            | Silicon pixel-W    | 165.7        | 180.0        | 125.0        |
| HCAL            | Scintillator-Steel | 180.5        | 302.8        | 140.2        |
| Flux return     | Scintillator/steel | 303.3        | 567.3        | 604.2        |
| LumiCal         | Silicon-W          | 155.7        | 170.0        | 20.0         |
| BeamCal         | Semiconductor-W    | 277.5        | 300.7        | 13.5         |





#### ENERGY

## **CLICdet**

- High-performing detector optimized for CLIC beam environment
- All-silicon vertex and tracking system, with spiral vertex endcaps for air cooling clicester
- PFA calorimetry (ECAL and HCAL within CALICE)
- Full GEANT-based simulation, including beam-induced backgrounds, available for optimization and physics studies
- Mature reconstruction chain allows detailed performance characterization
  - e.g. displaced track reconstruction



Momentum resolution



- 100 GeV
- Impact parameter resolution
  - c/b-tagging, Higgs branching ratios
  - $\rightarrow \sigma_{r\varphi} \sim a \oplus b / (p[\text{GeV}] \sin^{\frac{3}{2}} \theta) \mu m$   $a = 5 \, \mu m, \ b = 15 \, \mu m$
- Jet energy resolution
  - Separation of W/Z/H di-iets
  - $\rightarrow \sigma_E / E \sim 5\% 3.5\%$  for jets at 50 GeV - 1000 GeV
- Angular coverage
  - Very forward electron and photon tagging
  - $\rightarrow$  Down to  $\theta = 10 \text{ mrad} (\eta = 5.3)$
- Requirements from beam time structure and beam-induced background



Beam-induced backgrounds concentrated in very short bunch trains  $\rightarrow$  High instantaneous hit rates (up to 6 GHz/cm<sup>2</sup> @ 3 TeV CLIC)

Time-stamping: few ns @ 3 TeV CLIC (compared with ~1-10  $\mu$ s @ ILC)  $\rightarrow$  Fast detector signals / frontend

 $\rightarrow$  **Detector R&D** targeted at specific CLIC requirements





## **Vertex Detector**



Final subdetector to be installed, R&D to continue until ~2030

- 3 double layers, r<sub>min</sub>=16 mm, 3 μm point resolution
- Main challenges: beam backgrounds, power consumption, material budget (0.2-0.3% X<sub>0</sub> per layer)
- Technology options: CPS, FPCCD, DEPFET



- Single bunch time resolution
- 5 layers,  $r_{min}$  = 14 mm, < 3  $\mu$ m hit resolution
- Feature size ~20 μm
- <130 μW/mm<sup>2</sup>
- ~0.1% X<sub>0</sub> per layer material budget



Chronopixel prototype 3 development board

- monolithic CMOS design 90 nm feature size, 7 μm epitaxial layer 280 μm thick chip 10 ohm·cm manufactured by TSMC
- store up to 2 hits per pixel, 12 bit per timestamps
- 25 µm pixel pitch
- implements 6 sensor diode options



## **Main Tracker**

- ILD uses a Time Proiection Chamber (TPC) as the central tracker
- TPC delivers up to 220 true 3D space points along a track
- Gaseous detector: low material budget (~0.05 X<sub>0</sub> barrel region)
- Particle identification with dE/dx
- Readout options: GEM, Micromegas, pixel
- Field distortion due to ion backflow mitigated using gating device to collect positive ions in-between bunch trains.











- All Silicon Tracker
  - Using Silicon micro-strips
    - 25 µm pitch / 50 µm readout
    - v2 sensor prototype July 2017\*
- 5 barrel layers / 4 disks
- · Tracking unified with vertex detector
  - 10 layers in barrel
- Gas-cooled
- Material budget < 20%  $X_0$  in the active region
- Readout using KPiX ASIC
  - Same readout as ECAL

- $S_i D$  •
- Bump-bonded directly to the module











**GEM Gating Grid** 

**/**Fuiikura

8

## ECAL

### High granularity imaging calorimetry



or Scintillator strips (5x45mm<sup>2</sup>) with Tungsten absorber

Ultra-granular calorimeter: 10-100 million readout channels



## Scintillator ECAL prototype



### **Baseline design: Silicon/Tungsten**

Compact Electromagnetic Calorimeter w 13 mm Moliere Radius





## HCAL

- Two approached studied by CALICE
  - Analog HCAL: scintillator tile (3X3 cm<sup>2</sup>) readout using SiPM
  - (Semi-)Digital HCAL: RPC with 1X1 cm<sup>2</sup> pads

Baseline technology for the SiD HCal is Scintillator/SiPM/Steel





Scintillator tile (3x3 cm<sup>2</sup>) or Gas RPC (1x1 cm<sup>2</sup>) with Steel absorber for ILD

#### Analog HCAL prototype



#### Semi-digital HCAL prototype







## **Forward Calorimeters**







LumiCal prototype (DESY)

- Luminosity from low angle Bhabhas
- Reduce background
- -e/γ ID to few mrad

- Improve hermeticity
- Reduce backscatter
- Assist beam diagnostics

2 X<sub>0</sub> pre-radiator; introduces a little divergence in shower

Sensor sample

Not shown: 4 X<sub>0</sub> "post radiator" and 8 X<sub>0</sub> "backstop"

### Sensor irradiation studie

for Forward Calorimetry



- BeamCal radiation dose at inner radius ~100 Mrad/year
- Calorimetric hermeticity down to 6 mrad

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. 11



## **Other ILC Items**

- Muon system
  - Baseline for both concepts: Long scintillator strips with WLS fiber and SiPM readout
- Coil
  - Looking into alternative conductors like CICC
  - Implications for field, Cost ...
- MDI
  - The detectors do function for a range of L\*
- DAQ
  - Triggerless readout and reasonable data volume
  - With the "MAPSsification" the role of front-ends will change
- **Detector calibration and alignment** 
  - Can't be an afterthought in the time of push-pull
- Software and Computing
  - community wide software solutions (LCIO, DD4hep, etc) developed over 15 years
  - collaborating with other communities to modernize the software stack: key4hep



⊢ 1 cm

EDM4hep, PODIO GAUDI, Marlin DD4hep, delphes, Whizard

ROOT Geant





## **ILC Detector Design Updates Since DBD**

October 20, 2021

Updating the SiD Detector concept

M. Breidenbach and T. Markiewicz SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, USA

J.E. Brau Department of Physics, University of Oregon, Eugene, OR 97403, USA

P. Burrows Department of Physics, Oxford University, Oxford, UK

M. Stanitzki DESY, Notkestrasse 85, 22607 Hamburg, Germany

J. Strube University of Oregon, Institute for Fundamental Science, Eugene, OR 97403-5203

> A.P. White University of Texas Arlington, Arlington, TX 76019, USA

The SiD Detector is one of two detector designs for the future International Linear Collider (ILC) that were validated in 2012 SiD Caturas a compact, cost-constrained design for previosion Higgs and other measurements, and sensitivity to a wide range of possible new phenomena. A robust silicon vertex and tracking system, combined with a fwr Tash cartial solenoidal field, provides excellent momentum resolution. The highly granular calorimeter system is optimized for Particle Plow application to achieve verg good jet energy resolution over a wide range of energies. With a potential construction date of the LIC moving closer, it is now the time to review the design and technology decision that have been made during the DID Dapase and reconsider them in the light of the recent technological advances. For each area of SiD development R&D topies and opportunities for participation will be discussed.

I. INTRODUCTION

Oct 202

19

[physics.ins-det]

arXiv:2110.09965v1

The International Linear Collider (ILC) [I] is a proposed  $e^+e^-$  collider at the energy frontier. The ILC is a 20 km long linear accelerator using superconducting eavieties with a initial baseline center ofmass energy of 250 GeV. The ILC will provide polarized beams for both electrons (80%) and positrons (30%), which is a unique capability of linear colliden. The ILC project includes a clear upgrade path to center of-mass energies of 1 TeV, or even slightly beyond. The ILC has an anture baseline design which has been summarized in the Technical Design Report (TDR), which was presented in 2012 [Z].

The ILC environment is unique and very different than at synchrotrons. The ILC accelerates a bunch train with 1300 bunches roughly 550 ns apart roughly every 200 ms, so collisions only happen during 1 ms followed by a quiet time of 199 ms. This allows to buffer the data on the front-ends, read out at the end of the bunch train and then to power down the front-ends (power-pulsing). This reduces the average power consumption by roughly a factor of 100.

SiD started as a detector concept for linear coliders almost twenty years ago [5, 5]. It was well document (DBD) [6] in 2012. This hood will first give a brief review on the current design and layout of SiD and then identify and highlight the improvements appropriate for a construction start in the late 2020s. This note will not recapitulate the DBD in great doa complete summary of the physics motivations [2], the ILC accelerator [3] and the conceptual detector designed[5]. For a review of the R&D activities in the Larent Collider Community, the Detector R&D Report [3] to a cocclute summary.

#### https://arxiv.org/abs/2110.09965

#### **INTERIM DESIGN REPORT 2020**

The International Large Detector ILD Concept Group



#### https://arxiv.org/abs/2003.01116





## **Brief Status/Highlights of Progress**



- Demonstrated desired point resolution of <7 µm</li>
- Charge-sharing design works very well
- SiD ECAL
  - Second generation sensor arrived and bumpbonded

- ILD has a concept of the detector,
  - well defined

**R&D** status

- with technological options where sensible
- The main components of ILD
  - have been validated and beam-tested.
- A coherent System design has been developed.
- Both collaborations have been continuously pursuing physics studies for a wide range of possible signals at an LC, and detector performance studies
- Both collaborations were active in the Snowmass Studies
- Both collaborations are actively engaging with other Higgs factory studies
- A common software framework has been developed and is available to do studies and detector optimization studies, which is shared among ILD, SiD and CLIC (and increasingly also with FCC-ee and others).





# clc

## **R&D Progress for CLICdet**

Calorimeter R&D => within CALICE and FCAL

Silicon vertex/tracker R&D:

- Working Group within CLICdp and strong collaboration with DESY + AIDAinnova
- Now integrated in the <u>CERN EP detector R&D programme</u>

A few examples:

#### Monolithic sensors:

CLICTD 180 nm monolithic sensor

- Target: CLIC tracker
- Exploring large parameter space of sensor-design modifications, substrate materials (epitaxial, high-resistivity Cz) and thicknesses (40-300 µm), in collaboration with ATLAS MALTA / STREAM
- Detailed TCAD/Geant4-based simulation studies (AllPix<sup>2</sup>) to optimize sensor design

IEEE TNS 67.10 (2020): 2263-2272 NIM A 1006 (2021) 0165396 NIM A 1041 (2022) 167413

- Excellent performance observed in test-beam measurements and reproduced by simulations
- Results have served as input to sensor optimization, also for 65 nm process



## **R&D Progress for CLICdet**



Calorimeter R&D => within CALICE and FCAL

Silicon vertex/tracker R&D:

- Working Group within CLICdp and strong collaboration with DESY + AIDAinnova
- Now integrated in the <u>CERN EP detector R&D programme</u>

### A few examples:

### Hybrid assemblies:

#### CLICpix2

- Target: CLIC pixel detector
- 65 nm with thin active-edge sensors (25 µm pitch)

#### CLICpix2 hybrid assembly



 Efficiency, spatial and timing resolution targets are achieved, but not yet simultaneously with material budget target —> need advanced sensors / smaller pitch (28 nm ASICs, also considered for HL-LHC)





### **R&D** Tasks in ECFA Detector R&D Roadmap

|                        |                                 |          | 0  | ď  | \$       | 8 | 2  | 2  | 5  | Ŷ     | 4  | 5 | 2         | æ   | G.    | ę , | 6   | 2 |
|------------------------|---------------------------------|----------|----|----|----------|---|----|----|----|-------|----|---|-----------|-----|-------|-----|-----|---|
|                        |                                 | DRDT     |    |    | < 203    | 0 |    |    | 20 | 30-20 | 35 |   | 2035-2040 | 204 | -2045 | >   | 045 |   |
|                        | Position precision              | 3.1.3.4  |    |    |          | • |    |    |    | •     | •  | • |           |     |       |     |     | ē |
|                        | Low X/X                         | 3.1,3.4  |    | ē  |          | ě | ă  | ă  |    | ē     | ă. | ŏ | ă         | ă   | ŏ,    | ă i |     | 7 |
|                        | Low power                       | 3.1.3.4  | Τ. | ÷. | ē        | - | ă  | ă  | ÷. | ē.    | ă. | ŏ | ŏ         | ă   | ŏ,    | ă i |     | 7 |
| Vertex                 | High rates                      | 3.1.3.4  |    | ē  | ŏ        | ē | Τ. |    |    |       |    | ō |           | ŏ   | ŏ.    | ň,  |     | 2 |
| detector <sup>21</sup> | Large area wafers <sup>2)</sup> | 3.1, 3.4 | •  | ē  | -        | ē | ۲  | ō  |    |       | ē. | ē | ē         | ō   | ě.    | 5   | 5   | ć |
|                        | Ultrafast timing <sup>4</sup>   | 3.2      |    |    |          |   | Т  | Ξ. | ٠  | ٠     | Ξ. | ē | ē         | ŏ.  |       |     | 5   | 7 |
|                        | Radiation tolerance NIEL        | 3.3      |    |    | <b>—</b> |   |    |    | •  | ē     |    |   |           |     |       | ŏ   |     | 1 |
|                        | Radiation tolerance TID         | 3.3      |    |    |          |   |    |    | ٠  | •     |    |   |           |     |       | ē   |     |   |
|                        | Position precision              | 3.1,3.4  |    |    |          |   |    |    | •  |       |    | • | •         | •   |       | ē,  |     | 1 |
|                        | Low X/Xo                        | 3.1, 3.4 |    |    |          |   |    | ŏ  | ۲  |       | ŏ. | ō | ē         | ŏ   | ē     | ē,  | 5   | Ì |
|                        | Low power                       | 3.1, 3.4 |    |    |          |   |    | ŏ  | ŏ  |       | õ. | ò | ē         | ŏ   | ē     | ē,  | 5   | Ì |
|                        | High rates                      | 3.1, 3.4 |    |    |          |   |    |    | ē  |       | Ξ. | ò |           | Ξ.  |       | Ō,  | 5   |   |
| Tracker®               | Largo area wafers <sup>20</sup> | 3.1, 3.4 |    |    |          |   |    | ٠  | •  |       | •  | • | •         | ٠   | •     | 5 ( | 5   | 1 |
|                        | Ultrafast timing4               | 3.2      |    |    |          |   |    |    | •  |       | •  | • | •         | •   |       |     |     | Ċ |
|                        | <b>Radiation tolerance NIEL</b> | 3.3      |    |    |          |   |    |    |    |       |    |   |           |     |       | ē - |     | 1 |
|                        | Radiation tolerance TID         | 3.3      |    |    |          |   |    |    | •  |       |    |   |           |     |       | ē   |     |   |
|                        | Position precision              | 3.1, 3.4 |    |    |          |   |    |    |    |       |    |   |           |     |       |     |     |   |
|                        | Low X/Xo                        | 3.1, 3.4 |    |    |          |   |    |    |    |       |    |   |           |     |       |     |     |   |
|                        | Low power                       | 3.1, 3.4 |    |    |          |   | ٠  |    |    |       | •  |   | •         | •   |       |     |     | ¢ |
| e                      | High rates                      | 3.1, 3.4 |    |    |          |   |    |    |    |       |    |   |           |     |       |     |     |   |
| Catorineter**          | Large area wafers <sup>3)</sup> | 3.1, 3.4 |    |    |          |   | ٠  |    |    |       | •  |   | •         | •   |       | Đ ( |     | ( |
|                        | Ultrafast timing <sup>4</sup>   | 3.2      |    |    |          |   |    |    |    |       |    | • | •         | ٠   | •     |     |     |   |
|                        | Radiation tolorance NIEL        | 3.3      |    |    |          |   |    |    |    |       |    |   |           |     |       |     |     |   |
|                        | Radiation tolerance TID         | 3.3      |    |    |          |   |    |    |    |       |    |   |           |     |       |     |     |   |
|                        | Position precision              | 3.1, 3.4 |    |    |          | • |    | ٠  |    | •     | •  | • |           | ٠   |       |     |     |   |
| Time of flight?        | Low X/Xo                        | 3.1, 3.4 |    |    |          | ٠ |    | ٠  |    | ٠     | •  | • |           | ٠   |       |     |     |   |
|                        | Low power                       | 3.1, 3.4 |    |    |          | ٠ |    | ٠  |    | ٠     | •  | • |           | ٠   |       |     |     |   |
|                        | High rates                      | 3.1, 3.4 |    |    |          |   |    |    |    |       |    |   |           |     |       |     |     |   |
| This of tugit.         | Largo area wafers <sup>3)</sup> | 3.1, 3.4 |    |    |          | ٠ |    | •  |    | ٠     | •  |   |           | ٠   |       |     |     |   |
|                        | Ultrafast timing <sup>4</sup>   | 3.2      |    |    |          | ٠ |    | •  |    | ٠     | •  |   |           | ٠   |       |     |     |   |
|                        | Radiation tolorance NIEL        | 3.3      |    |    |          |   |    |    |    | ٠     |    |   |           |     |       |     |     |   |
|                        | Radiation tolerance TID         | 3.3      |    |    |          |   |    |    |    | •     |    |   |           |     |       |     |     |   |

ARA SESSION ACTI

Low power High-precision mechanical structures 62.63 High granularity 0.5x0.5 cm<sup>2</sup> or smaller 616263 6.2.6.3 Large homogeneous array 6.2.6.3 Improved elm, resolution 6.2,6.3 Front-end processing High granularity (1-5 cm<sup>2</sup>) 6.1, 6.2, 6.3 I ow power Low noise 6.1,6.2,6.3 Advanced mechanics Em resolution O/5%//E) High granularity (1-10 cm<sup>2</sup> I ow hit multiplicity High rate capability 6.2,6.3 6.2,6.3 Scalability High granularit Rad-hard photodetector 6.3 6.2.6.3 Dual readout tiles High granularity (PFA) High-precision absorbers 6.2.6.3 6.2,6.3 Timing for z position 6.2,6.3 With C/S readout for DE 6.1, 6.2, 6.3 Front-end processing Lateral high granularity 6.2 Timing for z position Front-end processin 6.2 100-1000 ps 61.62.63 10-100 ps <10 ps Up to 1016 n\_/cm2 6.1,6.2 > 1016 n /cm ~ 3%/ /E

Identified a set of detector R&D areas and defined the most important themes (DRDTs), and made general strategic recommendations (GSR)

Must happen or main physics goals cannot be met 🛑 Important to meet several physics goals 😑 Desirable to enhance physics reach 😑 RéD needs being met

To implement, the long-term R&D efforts into newly established Detector R&D (DRD) Collaborations

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.



|                                                                |                          | DRDT | < 2030 | 2030-2035 | 2040 | 2040-2045 | >2045        |
|----------------------------------------------------------------|--------------------------|------|--------|-----------|------|-----------|--------------|
|                                                                | Rad-hard/longevity       | 1.1  | •      |           | •    | • •       | • • •        |
| Auon system                                                    | Time resolution          | 1.1  |        | i i i     | •    | • •       | ē • •        |
| voposed technologies:                                          | Fine granularity         | 1.1  | • •    | •••       | •    | • •       | •••          |
| PC, Multi-GEM, resistive GEM,                                  | Gas properties (eco-gas) | 1.3  |        | •         |      | •         |              |
| Acromegas, µPeest, µPtC                                        | Spatial resolution       | 1.1  | • •    | •••       | ٠    | ē e 👘     | <b>Ö Ö Ö</b> |
|                                                                | Rate capability          | 1.3  | • •    | •••       | •    | • •       | •••          |
|                                                                | Rad-hard/longevity       | 1.1  | • • •  | •         | •    | •         |              |
| nner/central                                                   | Low X <sub>o</sub>       | 1.2  |        | •         | •    |           |              |
| racking with PID                                               | IBF (TPC only)           | 1.2  | • •    |           | •    |           |              |
| voposed technologies:                                          | Time resolution          | 1.1  | • •    | •         | •    | • • •     |              |
| PC+(multi-GEM, Moromegae,<br>indoxé, dnit chambers, cvéndrical | Rate capability          | 1.3  | • •    | •         | •    | • • •     |              |
| iyers of MPGD, shaw chambers                                   | dE/dx                    | 1.2  | •      | •         |      |           |              |
|                                                                | Fine granularity         | 1.1  | • •    | •         |      |           |              |
|                                                                | Rad-hard/longevity       | 1.1  |        |           | •    | • •       |              |
| reshower/                                                      | Low power                | 1.1  |        |           | •    | • •       | ē ē ē        |
| alorimeters                                                    | Gas properties (eco-gas) | 1.3  |        |           | •    | ••        |              |
| voposed technologies:                                          | Fast timing              | 1.1  |        |           | •    | • •       | • • •        |
| ZM, µRwall, InGrid (megsted                                    | Fine granularity         | 1.1  |        |           | •    | ••        |              |
| adout), Pico-sec, FTM                                          | Rate capability          | 1.3  |        |           | •    | • •       | •••          |
|                                                                | Large array/integration  | 1.3  |        |           | •    | ••        |              |
|                                                                |                          |      |        |           |      |           |              |





Must happen or main physics goals cannot be met Important to meet several physics goals

LIL solenoid

Dual solenoid

Desirable to enhance physics reach



## **R&D Needs for the New Timeline**

- Technology R&D
  - Superconducting Coil(s): wire and winding techniques, project with industry
  - MAPS for Tracking and ECAL: stitching for large scale sensors and reduced dead areas
  - Pixel readout for TPC: GridPix dE/dx from cluster counting
  - Fast timing/power requirements: benefits for tracking/calorimetry?
- Detector Concept development
  - Major subsystems: main calorimeters, magnet return yoke, …
  - Concept major parameters: overall dimensions, magnet field strength, MDI, services
  - Strategy for assembly and installation of detectors



Generatives of U.S. Department of U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.



## MAPS

### Monolithic Active Pixel Sensors (MAPS) for tracking (Vertex Detector, Main Tracker) and electromagnetic calorimeter (ECAL)

- Potential for providing higher granularity, thinner, intelligent detectors at lower overall cost
- Significantly lower material budget, with sensors and readout electronics integrated on the same chip
- Stitching for large scale sensors and reduced dead areas, towards the waferscale chip
- Lower power
- Fully-depleted MAPS/CMOS for faster charge collection, higher efficiency, less cross-pixel charge sharing

| Parameter                 | Value                              |
|---------------------------|------------------------------------|
| Min. Threshold            | $140 e^-$                          |
| Spatial resolution        | $7 \ \mu m$                        |
| Pixel size                | $25 \ge 100 \ \mu \mathrm{m}^2$    |
| Chip size                 | $10 \ge 10 \text{ cm}^2$           |
| Chip thickness            | $300 \ \mu m$                      |
| Timing resolution (pixel) | $\sim ns$                          |
| Total Ionizing Dose       | 100 kRads                          |
| Hit density / train       | $1000 \text{ hits} / \text{ cm}^2$ |
| Hits spatial distribution | Clusters                           |
| Power density             | $20 \text{ mW} / \text{cm}^2$      |





- Follow closely to CERN-lead 65 nm MAPS program
- Start designing prototypes targeted for SiD
- R&D on Stitching is essential, spearheaded by ALICE
- Inform Vertex Detector R&D





## **Precision Timing**

## Precision timing at the level of 10-30ps is a new capability to enhance PID and calorimeter measurements

- Large-radius Timing Layers in the in front of the calorimeter can provide Time-of-Flight (ToF) for PID
- **Volume timing**: good time resolution on the cell level in highly granular calorimeters
- requires technologies that can provide this timing; significant implications for electronics
- · potential compromises in timing for objects
- Technologies: LGAD or silicon tiles





- *Timing layers*: extreme timing in a few selected layers inside of the calorimeter system
  - can be combined with a wide range of technologies
  - excludes applications that require timing in the full shower volume, rather than on object level





## Precision Timing @ ILC

- Integrated time-stamping in the trackers
  - e.g. Background rejection in the Vertex Detector
    - Requiring ns-level resolution (intra-bunching timing)
    - Doable already today

#### Timing measurements for shower development in calorimeters

- Neutral and slow components
  - Requiring ~ns precision
  - Reachable today by reading out the cells
- Dedicated Timing Layers
  - Full 4D Tracking in the ILC environment
    - Nothing like the LHC
  - What about 5D calorimetry
    - How can precision timing be best used in PFA
    - What level of precision timing can make a real difference of calorimeter performance
  - Time-of-Flight systems for PID
    - 10 ps resolution as a goal to be competitive
  - What kind of physics does this enable and what are the Instrumentation implications
    - For a detector designed for 250-1000 GeV



TOF in the ECAL – Particle ID

- "Standard" silicon sensors could reach O(100-300ps)
- LGAD sensors could get us to O(10ps) Drawback: high power consumption.



- Could be a game changer for s-quark measurements
- $Z/\gamma/Z' \rightarrow ss \text{ or } H \rightarrow ss$





## (Some) Lessons Learned from (HL-)LHC

- Long timeline and different project phases
  - Planning with project management despite (large) uncertainties
  - Early investments in critical detector R&Ds
  - Necessity of proper transition from technology demonstration to TDR-level prototyping
  - Well-defined production phase
- Large complex detectors
  - Balance between conventional and novel technical solutions, and between adoption of diverse technical solutions and risk mitigation
  - Development of common solutions across subsystems and experiments
  - Optimization between design and buildability
    - Physicists vs Engineers: How to Strike the Right Balance?
  - Tests, tests, tests
    - Do systematical tests of all materials used
    - It is always the low tech (plumbing problems)
  - Integration, Installation and commissioning always more resource-consuming than expected
- International and distributed collaboration
  - System engineering and technical coordination
  - Multi-dimensional optimization of resource, expertise, schedule, deliverables

| Detector system                        | TDR   | Actual | TDR   | Actual |  |  |  |
|----------------------------------------|-------|--------|-------|--------|--|--|--|
| Pixels                                 | 06/03 | 03/07  | 03/05 | 12/07  |  |  |  |
| Silicon microstrips (barrel)           | 12/02 | 07/05  | 03/04 | 10/06  |  |  |  |
| Silicon microstrips (end caps)         | 12/02 | 06/06  | 03/04 | 10/06  |  |  |  |
| Transition radiation tracker           | 03/04 | 12/05  |       |        |  |  |  |
| Electromagnetic calorimeter (barrel)   | 06/03 | 07/04  | 12/03 | 03/07  |  |  |  |
| Electromagnetic calorimeter (end caps) | 01/04 | 09/05  | 06/04 | 03/08  |  |  |  |
| Hadronic calorimeter                   | 12/02 | 02/04  | 12/03 | 12/04  |  |  |  |
| Muon chambers                          | 12/04 | 12/05  | 12/03 | 06/06  |  |  |  |
| Solenoid magnet                        | 01/02 | 09/01  | 03/03 | 12/05  |  |  |  |
| Barrel toroid magnet                   | 06/02 | 06/05  |       |        |  |  |  |
| End-cap toroid magnet                  | 12/03 | 11/06  |       |        |  |  |  |

ATLAS

CMS

Shown are the milestone dates for the delivery of major components to CERN, as planned in the Technical Design Reports (TDR), and the actual or future planned delivery of milestones.

https://doi.org/10.1146/annurev.nucl.54.070103.181209



## Summary

- CLICdet, and two ILC detector concepts, ILD and SiD, have been developed and optimized for an extended period
- All have excellent performance for the full range of CLIC/ILC physics program
- All are open to new ideas/technologies and welcome new collaborators

Many Thanks to CLIC Collaboration, ILD Collaboration and SiD collaboration, particularly Ties Behnke, Aidan Robson, Marcel Stanitzki and Andy White, for making the materials readily available and preparing this presentation. All inaccuracies and omissions are my own.





## THANK YOU



**ENERGY** Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.



## ILD & SID





