Sustainability studies for the Cool Copper Collider

Martin Breidenbach¹, Brendon Bullard¹, Emilio Nanni¹, Dimitris Ntounis^{1,2}, Caterina Vernieri^{1,2} 1) SLAC National Accelerator Laboratory, 2) Stanford University

International Linear Colliders Workshop May 18, 2023

Introduction

C³ Main Linac Cryomodule

9 m (600 MeV/ 1 GeV)

- * Community consensus that Higgs factory should be the next major collider after HL-LHC
- ◆ The Cool Copper Collider (C³) is a linear e+e- collider concept with a compact 7-8 km footprint
 - Enabled by normal conducting copper RF cavities, low surface fields/breakdown rates \rightarrow high gradient!
- - How can we continue to dand operate large colliders sustainably?
 - Evaluate emissions due to construction and operation, compare to other Higgs factory options on the basis of physics reach

Physics reach

0.01

All e+e- Higgs factories can operate in the 250 GeV ZH mode

Sensitivity comparison for each collider concept

- * Taking into account effects of luminosity and polarization to evaluate measurement sensitivity:
 - C³/ILC-250 performs similarly to CLIC-380, C³/ILC-550 outperforms CLIC-380
 - C³/ILC-550 matches or exceeds physics reach of FCC in all coupling sensitivity metrics
 - Compare colliders based on their total carbon footprint

		HL-LHC +				
Relative Precision (%)	HL-LHC	$ILC-250/C^3-250$	$ILC-500/C^3-550$	FCC-ee 240/360	CEPC-240/360	CLIC-380
hZZ	1.5	0.22	0.17	0.17	0.072	0.34
hWW	1.7	0.98	0.20	0.41	0.41	0.62
$hbar{b}$	3.7	1.06	0.50	0.64	0.44	0.98
$h\tau^+\tau^-$	3.4	1.03	0.58	0.66	0.49	1.26
hgg	2.5	1.32	0.82	0.89	0.61	1.36
$hc\bar{c}$	-	1.95	1.22	1.3	1.1	3.95
$h\gamma\gamma$	1.8	1.36	1.22	1.3	1.5	1.37
$h\gamma Z$	9.8	10.2	10.2	10	4.17	10.26
$h\mu^+\mu^-$	4.3	4.14	3.9	3.9	3.2	4.36
$htar{t}$	3.4	3.12	2.82	3.1	3.1	3.14
hhh	0.5	0.49	0.20	0.33	-	0.50
$\Gamma_{ m tot}$	5.3	1.8	0.63	1.1	1.1	1.44

Snowmass Higgs physics topical group report

Tunnel construction for FCC-ee

- * <u>Snowmass climate impacts report</u> analyzes FCC construction using bottom-up and top-down approaches
 - Only takes into account main tunnel (excludes access shafts, experimental halls, etc.)

Bottom-up approach

Driven by manufacture of concrete

FCC inner/outer diameter 5.5/6.5m Concrete is 15% cement, which releases 1 ton CO₂ per ton

Top-down approach

Includes secondary emissions (e.g. construction machinery)

Rough estimates of 5-10k kg CO₂ per meter of tunnel length

237 kton CO₂ (for 7 mil m³ spoil, Wit concrete density 1.72 ton/m³)

With 5k kg CO₂/m, yields **500 kton CO₂**

Roughly factor of 2 difference between base material emissions and secondaries

More recent update on FCC civil engineering (<u>L. Broomiley</u>)

Collider project inputs

SLAC

- ◆ ARUP analysis indicates 80% of construction emissions arise from materials (A1-A3), remaining from material transport and construction process
 - More thorough than Snowmass report rely on it for inputs for other Higgs factory parameters!
 - Approximate global warming potential (GWP) for tunnels ~6 tn/m for CLIC/ILC, apply for circular collider concepts

Project	Main tunnel length (km)	GWP (tCO ₂ e)			
		Main tunnel	+ Other	+ A4,A5	
FCC	90.6	545	700 (+30%)	875 (+25%)	
CEPC	100	600	780 (+30%)	975 (+25%)	
ILC	13	80	200	270	
CLIC	11	70	105	125	

Design of additional tunnels (shafts, klystron gallery, caverns) will be used to improve rough +30/+25% estimates

Thanks to Steinar Stapnes for helpful discussions and feedback!

C³ Excavation models

Bored tunnel

Total of 600k m³ total excavation, 225k m³ concrete

► 200k m³ of excavation comes from tunnel volume, concretes include all site requirements!

Releases
58 kton CO₂
from concrete

Double it to account for top-down vs. bottom-up (120 kton CO₂)

Cut and cover

Preferred option for reduced construction costs and emissions (but not required)

- Much of the displaced earth is pushed on top (shielding), only ~40k m³ must be transported away
- ► Same amount of concrete required as for tunnel, assume emissions can be reduced to 65 kton CO₂

Operations emissions

- Driven by carbon footprint of energy production used during operations
 - Site power requirements have room for optimization, consider nominal beam parameters
 - Carbon intensity (equivalent emissions of gCO₂/kWh) key parameter, depends on location/power sources
 - "The United States has set a goal to reach 100 percent carbon pollution-free electricity by 2035" (from April 2021 <u>US emissions target report</u> **is this a realistic assumption?**

National grid storage capacity expected to reach 120 GWh by 2040 - 8 hours of storage at 150 MW < 1% of grid capacity

NREL Storage Futures Study

Siting options for C³

Janot, Blondel 2022

Carbon intensity projections

US Energy Information Agency (EIA), Annual Report 2023

U.S. net electricity generation by fuel

Project carbon intensities in 2022 into 2040 based on **Low Uptake** scenario of energy source portfolio (national level)

CAISO: $194 \rightarrow 70 \text{ gCO}_2/\text{kWh}$ PJM: $381 \rightarrow 130 \text{ gCO}_2/\text{kWh}$

World Energy Outlook 2022, International Energy Agency

Stated Policies
Scenario (STEPS)

Announced Pledges
Scenario (APS)

Net Zero Emissions by 2050 (NZE)

More aggressive decarbonization scenario

Figure 6.14 ► Average CO₂ intensity of electricity generation for selected regions by scenario, 2020-2050

US: **45** gCO₂/kWh EU: **40** gCO₂/kWh

Japan: **150** gCO₂/kWh

China: 300 gCO₂/kWh

ightarrow both estimations using projections from US and international agencies give comparable projections

(Note: Silicon Valley Clean Energy can provide 175 MW of clean energy in 2-3 year timeframe)

Operations parameters

Normal conducting RF uses less power when not in collisions than superconducting RF

Higgs Factory	CLIC	ILC	C_3	CEPC	FCC-ee
$\sqrt{s} \; [{ m GeV}]$	380	250/500	250/550	240/360	240/345/365
Instantaneous power P [MW]	110	111/173	150/175	340	290/350/350
Annual collision time $T [10^7 \text{ s}]$	1.20	1.60	1.60	1.30	1.08
Operational efficiency ϵ [%]	75	75	75	60	75
→ Site power fraction during downtime κ [%]	30	50	30	50	50
Run length [years]	8	11/9	10/10	10/5	3/1/4

Energy consumption and emissions

Total energy consumption over full run time

C³ and CEPC consumption driven by long run times

Carbon footprint from operations only

Differentiation in environmental impact driven by carbon intensity at target site for each project

Impacts of construction

Emissions from construction

Common construction emission per km among linear/circular concepts - differentiation from total length!

Total carbon impact

CEPC least sustainable, driven by energy production and long run times, ILC challenging from operation and construction

C³ power optimizations

Possible options for beam power reduction with several different approaches

Impact on luminosity and ultimate physics performance not yet evaluated

Scenario	RF System	Cryogenics	Total	Reduction
	(MW)	(MW)	(MW)	(MW)
Baseline	40	60	100	-
RF Source Efficiency Increased 15%	31	60	91	9
RF Pulse Compression	28	42	70	30
Double Flat Top	30	45	75	25
Halve Bunch Spacing	30	45	75	25
All Scenarios Combined	12	24	36	64

Emissions due to operations have clear road toward further reduction since clean energy in California is already accessible, operations emissions of C³ can be virtually eliminated (limited by emissions from manufacturing solar panels)

Carbon capture in concrete can offset emissions, but scalability not yet demonstrated

→ great potential for green Higgs factory with C³!

Conclusions

- ◆ C³ is a candidate for a compact linear e+e- Higgs factory with low carbon impact
- * Lower energy consumption over circular colliders to achieve same (or better) physics goals
 - C³ physics reach enhanced by polarized electrons, ability to access \sqrt{s} = 550 GeV running mode
- * Significantly reduced emissions associated to construction than alternative Higgs factory concepts
 - Emissions from conventional concrete manufacturing, factor 4-8 lower emissions for C³ than FCC
- * Can be built anywhere, but compelling to build in US due to expected grid electrification
 - By 2040, carbon intensity of electricity generation to be on par with EU, far below Japan and China
- + Finalizing details of sustainability analysis, paper to follow

Thank you for your attention - stay tuned!

Backup -

Focus on linear accelerators

Collider project inputs

ARUP

Linear Collider Options

S. Evans

1. CLIC Drive Beam

5.6m internal dia. Geneva. (380GeV, 1.5TeV, 3TeV)

Reference: CLIC Drive Beam tunnel cross section, 2018

2. CLIC Klystron

10m internal dia. Geneva. (380GeV)

Reference: CLIC Klystron tunnel cross section, 2018

3. ILC

Arched 9.5m span. Japan. (250GeV)

Reference: Tohoku ILC Civil Engineering Plan, 2020

Projected daily energy load curves by region (US)

Energy outlook March 16 2023

Hourly U.S. electricity generation and load by fuel for selected cases and representative years billion kilowatthours

Data source: U.S. Energy Information Administration, Annual Energy Outlook 2023 (AEO2023)

Note: Negative generation represents charging of energy storage technologies such as pumped hydro storage and battery storage. Hourly dispatch estimates are illustrative and are developed to determine curtailment and storage operations; final dispatch estimates are developed separately and may differ from total utilization as this figure shows. Standalone solar photovoltaic (PV) includes both utility-scale and end-use PV electricity generation.

Additional operating parameters –

Higgs factory	CLIC [29]	ILC [28]	C^3 [3]	CEPC [30],[31]	FCC-ee [32],[24]
Center-of-mass energies considered \sqrt{s} [GeV]	380	250, 500	250, 550	240,360	240, 340-350, 365
Site Power P [MW]	110	111 at 250 GeV	$\sim 150 \text{ at } 250 \text{ GeV}$	340	290 at 240 GeV
		173 at 500 GeV	$\sim 175 \text{ at } 550 \text{ GeV}$	34 0	$\sim 350 \text{ at } 340 - 350, 365 \text{ GeV}$
Annual collision time T_{annual} [10 ⁷ s/year]	1.20	1.60	1.60	1.30	1.08
Operational Efficiency ϵ	0.75	0.75	0.75	0.60	0.75
Site power fraction during downtime κ	0.3	0.5	0.3	0.5	0.5
Running time T_{run} [years]	8	11 at 250 GeV 9 at 500 GeV	10 at 250 GeV 10 at 550 GeV	10 at 240 GeV 5 at 360 GeV	3 at 240 GeV $1 at 340 - 350 GeV$ $4 at 365 GeV$
Instantaneous Luminosity/IP \mathcal{L}_{inst} [·10 ³⁴ cm ⁻² s ⁻¹]	2.3	1.35 at 250 GeV 1.8 at 500 GeV	1.3 at 250 GeV 2.4 at 550 GeV	8.3 at 240 GeV 0.83 at 360 GeV	8.5 at 240 GeV 0.95 at 340 - 350 GeV 1.55 at 365 GeV
Target Integrated Luminosity $\mathcal{L}_{\mathrm{int}}$ [ab ⁻¹]	1.5	2 at 250 GeV 4 at 500 GeV	2 at 250 GeV 4 at 550 GeV	20 at 240 GeV 1 at 360 GeV	5 at 240 GeV 0.2 at 340 - 350 GeV 1.5 at 365 GeV

