#### 



# Traveling wave SRF cavity status and R&D plan

Vyacheslav Yakovlev, *et al.* May 16, 2023

The 2023 International Workshop on Future Linear Colliders (LCWS2023)

Session Accelerator: Superconducting RF





#### On behalf of SRF TW collaboration:

P. Avrakhov<sup>1</sup>, A. Kanareykin<sup>1</sup>, R. Kostin<sup>1</sup>, S. Belomestnykh<sup>2</sup>, F. Furuta<sup>2</sup>,
S. Kazakov<sup>2</sup>, G. Romanov<sup>2</sup>, N. Solyak<sup>2</sup>, T. Khabiboulline<sup>2</sup>, G. Wu<sup>2</sup>,
V. Yakovlev<sup>2</sup>, J. Rathke<sup>3</sup>, H. Padamsee<sup>4</sup>, V. Shemelin<sup>4</sup>

<sup>1</sup>Euclid Techlabs LLC, Rockville, MD <sup>2</sup>Fermilab, Batavia, IL <sup>3</sup>AES Inc, NY <sup>4</sup>Cornell University, Ithaca, NY



# Outline

- Introduction
- Advantages of TW
- Challenges for TW structure
- One-cell cavity with feedback waveguide
- 3-cell TW cavity status
- R&D plans
- Summary



# Introduction

Present Limits of SRF:

- The Standing Wave (SW) TESLA Niobium-based structure is limited to a gradient of about 50 MV/m by the critical RF magnetic field (200 – 210 mT).
- Advanced shape cavities will be limited by the critical RF magnetic field to about 60 MV/m
   Re-entrant, Low-Loss, Ichiro, Low Surface Field
   For advanced shape, we lower Hpk/Eacc (by10-20%)
   but we raise Epk/Eacc (15-20%)
- How to break through the gradient barrier <u>with Niobium</u>?
- Explore the option of Niobium Traveling Wave (TW) structures

🛠 Fermilab

#### **Advantages of TW Structures**

- □ Travelling wave improves transit time factor and therefore allows lower <u>BOTH</u>  $B_{pk}/E_{acc}$  and  $E_{pk}/E_{acc}$ 
  - RF power returns not through the accelerating structure (to form a standing wave with harmful peaks), but through a separate feedback Nb waveguide
- Travelling wave cavities operate at maximal group velocity in contrast to SW operating at zero group velocity, and therefore allow
  - Longer cavities  $\rightarrow$  smaller gaps between cavities  $\rightarrow$  higher average gradient;
  - Smaller aperture  $\rightarrow$  additional increase in gradient because smaller  $B_{pk}/E_{acc}$  and  $E_{pk}/E_{acc}$
  - Field profile tuning easier,
- □ Travelling wave  $\pi/2$  structures offer higher G\**R*/*Q* → lowers Cryo power.
- □ By choosing the Low-Loss cell shape + reduced aperture it is possible to lower  $B_{pk}/E_{acc}$  by 48% over the TESLA structure!

🛠 Fermilab

#### **Opening the door to** $E_{acc}$ > 70 MV/m !!

#### **Advantages of TW Structures (cont)**

- Smaller aperture (see above) is allowed because bunch charge for 3 TeV ILC upgrade will about 3 X less to get acceptable IP background...
- □ Putting SRF on the Road to ILC 3 TeV with Niobium
- □ No need to struggle with exotic new superconductors or overlayers



e-field (f=1.3) [2[1,0]+2[1,110]] & Orientation Outside Component Abs Frequency 1.2999 GHz Phase 0\* Cross section A Cutplane at Piaco 0.000 mm Maximum on Plane (Plot) 7554.71 V/m Maximum (Plot) 7951.1V/m

#### **Challenges for TW Structures**

- Requires twice the number of cells per meter to provide the proper phase advance (about 105 degrees)
- Cavity fabrication and surface processing procedures and fixtures must deal with (roughly) double the number of cells per structure.
- □ A feedback waveguide for redirecting high power from the end of the structure back to the front end of accelerating structure.
  - The feedback requires careful tuning to compensate reflections along the TW ring to obtain a pure traveling wave (a special "matcher" in addition to a main tuner to reach partial standing wave degeneracy)



# Path for TW cavity for ILC

#### General studies:

- New approach of multi-parametric optimization developed, which takes into account both maximally possible fields, *E* and *H*.
- Optimization shows that TW structure can have the accelerating gradient above 70 MV/m with the same critical magnetic and electric fields that in the SW structure.
- No multipactor in the cavity and in a feedback waveguide
- No cavity length limitation by a coupling between cells
- Tuning and "matching" (achieving of travelling wave) procedures are developed

🛠 Fermilab

- High-power coupler concept is developed
- TW RF diagnostics is developed

# Path for TW cavity for ILC

#### Strategy of technology development for TW: step-by-step approach

HG tests of a 3- cell TW

cavity with feedback WG<sup>\*</sup>:

HG tests of a single cell cavity with feedback WG<sup>\*</sup>:





HG tests of a 0.5 m- long TW cavity with feedback WG, HP couplers, tuners and diagnostics (in collaboration with Cornell):

- Designed, manufactured (AES), processed;
- Reached 26 MV/m with inferior (easier) treatment of BCP
- Designed, manufactured (**AES**), processed (BCP);
- Tuning is in a process
  - HG tests are scheduled for summer 2023

with Cornell):

- The cavity cell RF optimization is
   OK
- Cavity-WG transition RF design is
   OK
- TTF-III HP coupler are supposed to be used.
- He vessel design not started yet
- Tuners design not started yet



\*Euclid Techlabs DOE SBIR DE-FG02-06ER84462 and DE-SC0006300.

#### Status of the 1.3 GHz, 3-cell TW cavity HG tests:

|                                                 | Cavity Parameters                                  | TTF   | LL60  | RE70  | STWA-105° |  |
|-------------------------------------------------|----------------------------------------------------|-------|-------|-------|-----------|--|
|                                                 | Aperture, mm                                       | 70    | 60    | 70    | 60        |  |
|                                                 | $k_{cc}(*), \%$                                    | 1.9   | 1.52  | 1.57  | 3.35      |  |
|                                                 | $E_{\rm peac}/E_{\rm acc}$                         | 2.0   | 2.36  | 2.4   | 1.94      |  |
|                                                 | $H_{\text{peac}}/E_{\text{acc}}, \text{mT/(MV/m)}$ | 4.15  | 3.61  | 3.78  | 3.05      |  |
| Couplers                                        | $R_{\rm sh}/Q,\Omega$                              | 1036  | 1206  | 1140  | 1808      |  |
| Wayaguida                                       | $GR_{\rm sh}/Q,\Omega^2$                           | 30800 | 37970 | 33762 | 39075     |  |
| Matcher And |                                                    |       |       |       |           |  |

Further optimization has been performed - H. Padamsee, et all, SRF21



- The cavity OK
- The "matcher" -OK •

Main Couplers

Diagnostics – OK

Processing fixtures – OK

🛠 Fermilab

• The input couplers - OK • The cavity processing\* - OK

\*120um rotational BCP, 800c bake, external BCP to remove oxides





Setup 1



3 modes



11 05/16/23 V. Yakovlev, et al, Traveling wave SRF cavity status and R&D plan

| date       | mode 1  | mode 2  | mode 3  | mode 4  | mode 5  | mode 6  | BCP | Temp | Vac/Air | Ribs |
|------------|---------|---------|---------|---------|---------|---------|-----|------|---------|------|
| Fsol CST   |         |         |         | 1284    | 1302.1  | 1302.1  | Ν   | RT   | Air     | -    |
| Fsol CST   |         |         |         | 1281.54 | 1297.9  | 1301.7  | ВСР | RT   | Air     | -    |
| Fsol CST   |         |         |         | 1283.9  | 1300.82 | 1303.8  | BCP | COLD | VAC     | -    |
| HFSS Eigen |         | 1037.1  | 1165.32 | 1274.28 | 1301.17 | 1301.24 | Ν   | RT   | Air     | -    |
| CST Eigen  | 961.785 | 1037.3  | 1165.45 | 1274.23 | 1301.03 | 1301.19 | Ν   | RT   | Air     | -    |
| CST Eigen  | 959.692 | 1035.23 | 1163.27 | 1271.26 | 1298.83 | 1299.03 | BCP | RT   | Air     | -    |
| CST Eigen  | 961.376 | 1037.05 | 1165.31 | 1273.49 | 1301.1  | 1301.33 | BCP | 2K   | Vac     | -    |
| 2016       |         | 1044.5  | 1173.65 | 1277.91 | 1303.47 | 1305.77 | N   | RT   | Air     | N    |
| 9/23/2022  | 968.192 | 1038.59 | 1166.26 | 1277.78 | 1302.16 | 1305.68 | Ν   | RT   | Air     | Y    |
| 3/14/2023  |         |         |         | 1275.87 | 1300.67 | 1304.52 | ВСР | RT   | Air     | Y    |
| 4/10/2023  |         |         |         | 1275.73 | 1300.52 | 1304.42 | BCP | RT   | Air     | Y    |



#### New setup

- New short cables
- Actuated phase shifters by EUCLID control box and stepper motors









- Yellow clear signal from middle
- Blue and Magenta FW and BW
- Mathcad model predicts similar behavior:
  - FW changes both directions following phase
  - BW only on and repeats SW signal.





Tuning SW to get symmetrical distribution of TW03AES1

#### □ First attempt

- Push cell3 by 20kHz
- Negative frequency shift expected but behaved opposite
- Frequency increased anc field in cell 3 increased
- Second attempt
  - Push cell 2
- Same opposite behavior
   Problem with tuning split ring discovered (next slide)







#### Tuning fixture problem

- Split rings should contact the cavity close to the stiffening ring to deform the length
- In our case the point of contact is at the equator and cavity shape is deformed. The cavity is more rigid there.
- New split rings have been designed and fabricated.
- Tuning is continuing.





### **Further R&D plans D** Nearest plan:

- Complete the 3-cell cavity tuning field flatness and TW (May-June 2023)
- Demonstration of a HG TW in the 3-cell cavity at VTS (summer, 2023)
- Achieving maximal acceleration gradient in this cavity (fall and winter 2023)
- Design of the 0.5 m long TW SRF structure and its components including
  - The cavity;
  - Tuners (the main tuner and the "matcher");
  - He vessel
  - Diagnostics probes
- Manufacturing, processing and HG tests of the bare TW cavity (3 years).
- Manufacture and tests of the dressed cavity with the main tuner and TTF-III couplers.

# **Summary**

18

05/16/23

- TW Nb cavity with feedback waveguide potentially may allow acceleration gradient up to 70 MV/m
- R&D plan includes step-by –step experiments from a one-cell cavity with the feedback WG to a full –scale cavity.
- One-cell SRF cavity with the feedback WG is successfully designed, manufactured and tested, that showed the possibility of the feedback WG processing.
- Basing on this experiment the next step is planned: a 3-cell TW SRF cavity, which should demonstrate a HG TW wave in a SRF cavity.
- The 3-cell cavity and its components are designed and manufactured.
- □ The cavity is processed and under the tuning.
- □ The HG tests are scheduled for summer 2023.
- □ The next step 0.5 m long TW SRF structure is under design .

🛠 Fermilab

#### □ TW SRF cavity has a long story



□ and, we are sure, a bright future!

# MANY THANKS!

