

US Target and Sources Roadmap Workshop

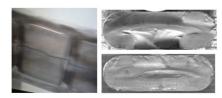
- The Target and Sources Roadmap Workshop was a hybrid event hosted by Fermilab April 11-12.
- The goal of the workshop was to provide input to HEP GARD on R&D topics for the next decade and prepare input to P5.
- Target research is focused on needs for LBNF/DUNE and a subsequent Muon Collider.
- Sources R&D will attempt to address many applications, including Linear Colliders, EIC, FELs, and polarized positrons at CEBAF.

Target Working Group Summary

The High Power Targetry Working Group was chaired by Frederique Pellemoine from FNAL.

HPT produced a draft document and contributed a Short Remark to the P5 Townhall at SLAC.

	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY31
Qualified material development/design										
Graphite *		LBN	NF - 1.2 N	мw						
Graphite *		ļ	LB	NF - 2 M	W+					
Ti-alloys *		LB	NF-1.2 N	/IW						
Ti-alloys *	LBNF - 2 MW+									
Novel material development										
High Entropy Alloys (HEAs)	LBNF - 2MW+ / multi MW targetry									
Nanofibers	multi MW target									
Refractory high-Z material					Rare F	rocess r	nulti MV	V target		
Composite material (SiC-coated graphite and SiC-SiC composites, 2D/3D carbon/carbon, Mo-C, etc)				ı	multi M\	N target	ry			
Potential novel material to be considered in the future **										
Liquid metal						Rare P	rocess n	nulti MV	V target	
Fluidized flowing target material						Rare P	rocess n	nulti MV	/ target	


^{*}continuing study, started in the past- assume 10-year development

F. Pellemoine P5 Short Remark:

https://indico.slac.stanford.edu/event/7992/contributions/6093/attachments/2702/7723/HPT%20RD%20-%20P5%20Town%20Hall%20-%20F-Pellemoine-%20open%20session.pdf

Graphite neutrino target (NOvA MET series)

MINOS NT-02 target failure: radiation-induced swelling (FNAL)

Beryllium window embrittlement (FNAL)

^{**} only feasible with expending workforce

Sources Working Group Summary

The Sources Working Group was chaired by Yine Sun from ANL.

Luca Cultrera,¹ Spencer Gessner,² Joe Grames,³ Siddharth Karkare,⁴

Pietro Musumeci,⁵ Philippe Piot,^{6,7} John Power,⁷ Yine Sun⁷

¹Brookhaven National Lab., Upton, NY 11973

²SLAC National Accelerator Lab., Menlo Park, CA 94025

³Jefferson Lab., Newport News, VA 23606

⁴Arizona State University, Tempe, AZ 85281

⁵University of California, Los Angeles, CA 90095

⁶Northern Illinois University, DeKalb, IL 60115

⁷Argonne National Lab., Lemont, IL 60439

Sources R&D Timeline

Year	Near-term (<5 years)	Mid-term (5~10 years)	Long-term (10~20 years)				
e ⁻ Cathode	Photocathodes with 1% QE and 30 me		es with 1% QE and 5 meV MTEs				
e ⁻ Gun	Continue to explore new and promising photocathodes (robust surfaces, nano-structures, higher QE and polarization) DC gun beam ~1-10 mA polarized 10 ⁻¹⁴ Torr vacuum for long GaAs lifetime DC gun beam 10~20 mA polarized NCRF: cryo gun at 250 MV/m; x-band gun, CW and Low Frequency rf gun Polarized GaAs in an SRF photogun SCRF gun 50 MV/m						
e ⁻ Injector	Control laser profile, limit nonlinear SC induced emittance growth: beer can (mid); elliptical (far) NCRF, SRF accelerating cavities: fully RF symmetrized fields to eliminate emittance growth to 10% (near), 1%(mid), 0.1%(far) Partition phase space: RFBT+EEX for damping ring free (mid), linear LPS (long) High Charge Drive Bunch Trains: charge-balanced, equal energy bunches duration 5-25 nsec.						
e ⁺ polarized	SC undulators Compton-based sources - higher than the state of the st	gh flux circularly polarized gamma-rays R8	-class polarized e+ source .D				
e ⁺ unpolarized	Targets for high intensity Capture and ac	cceleration sections es for accelerator and ultrafast science (als	o polarized)				

Cathode R&D

Polarized Photocathodes for Future Linear Colliders: Status and Outlook

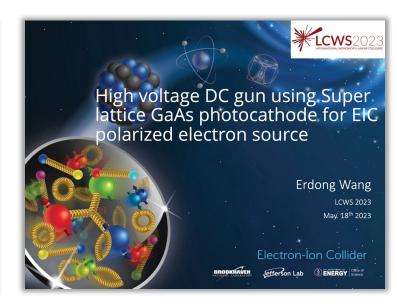
Jared Maxson Cornell Physics, CLASSE

LCWS: May 16 2023

See talk by J. Maxson: SLAC

https://indico.slac.stanford.edu/event/7467/contributions/5569/

Gun R&D

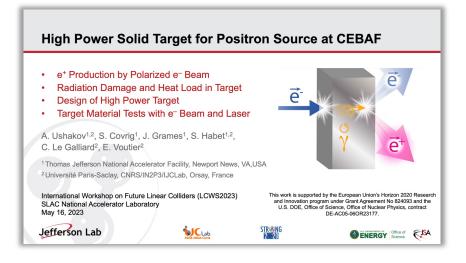


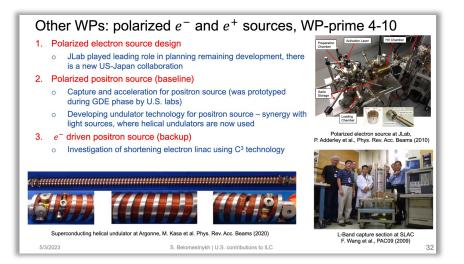
Proposed new polarized beam sources from GaAs call for higher peak current CW <1 pC Pulsed > 1 nC CW > 10-100 pCHibernating Proposed Operating 2.5 x 10^8 cw 50 ps 50 ps 333 ps 4 ns 2.45 us 556 ns 61.6 ns 400 ps 776 ps 4 ns 1.8 MHz 250 MHz 50 Hz 5 (10) Hz 0.28 pC 0.96 nC 40 pC 0.04pC 0.11p0 4.8 nC 6300 nC 10,000 uA 19.8 mA 1.8 x 10^-2 0.025 0.8 A 250 mA (macro 33 uA 5.6 mA 1 mA 4.5 A 17 mA/cm² 0.7 A/cm2 0.3A/cm^2 16 A/cm2 6 A/cm2 12 A/cm2 < 4 A/cm2 Older sources Newer sources Jefferson Lab J. Grames, Snowmass 2021 Electron Source Workshop

https://indico.slac.stanford.edu/event/7467/contributions/5631/

See talk by E. Wang:

https://indico.slac.stanford.edu/event/7467/contrib utions/6108/




Polarized Positron R&D

See talk by A. Ushakov:

https://indico.slac.stanford.edu/event/7467/contr ibutions/5582/

See talk by S. Belometskyh: P5 SLAC Townhall

