

Development of X-Band Dielectric Disk Accelerating Structures

Chunguang Jing for Euclid Beamlabs & Argonne Wakefield Accelerator

> LCWS 2023 May 17 2023

Motivation

- Long term: develop enabling technologies for the short pulse TBA based SWFA linear collider concept.
- Near term: support demonstration of 0.5GeV electron beam energy gain at the AWA facility.
- Improve RF-to-beam efficiency

 High shunt impedance under a high group velocity
- Short pulse high gradient acceleration
 - Capitalizes on the correlation of RF breakdown rate and RF pulse length

Dielectric Disk Accelerators

- Dielectric disk-loaded waveguides introduced in the 1940's-50's
- Modern ceramics with high dielectric constant and low loss provide opportunity to realize high shunt impedance structures
- Higher: group velocity, shunt impedance, Q
- Tuning easier than for DLAs
- Drawback: surface electric field much higher than DLAs, fabrication difficult

26 GHz Parameter	DDA	DLA	Copper-Disk*
Aperture	3 mm	3 mm	3 mm
Outer Diameter	9.23 mm	4.99 mm	9.27 mm
Thickness	0.5 mm	1 mm (wall)	0.5 mm
Dielectric constant	50	10	N/A
Loss tangent	5e-4	1e-4	N/A
Group velocity	0.16c	0.11c	0.017c
Shunt Impedance	208 MΩ/m	50 MΩ/m	139 MΩ/m
Q	6400	2300	4300
Accel. gradient	363 MV/m	363 MV/m	N/A
Surface gradient	660 MV/m	363 MV/m	N/A

*Constant impedance $2\pi/3$ structure, not suitable for short RF pulse acceleration due to low group velocity

Euclid-AWA DDA Testing History

- Prototype I Brazed: Dec. 2019-Jan. 2020
- Prototype II Brazed: Failed during brazing
- Prototype III Clamped: Dec. 2021-Jan. 2022
- Prototype IV Brazed: upcoming 2023
- Multicell Clamped: present, May 2023

Fabrication Challenges

- Most significant challenge for program
- Precision of dielectric properties
- Machining feasibility/tolerance
- Brazing vs. Clamping

Dielectric Material Characterization

- Prototype I & II:
- BaTiO_x ceramic (D-50) from Skyworks (Trans-Tech)
- 10 coupons measured (4 GHz):
 - $-\epsilon_{\rm r} = 50.14 \pm 0.35$
 - $\tan \delta = 8.00e-5 \pm 0.32e-5$

- Prototype III:
- $Ca_vTi_wLa_xAl_yO_z$ ceramic (D-47) from Keramika
- 3 coupons measured (3.8-7.4 GHz), extrapolated to 11.7 GHz
 - $-\epsilon_{\rm r} = 47.7$
 - $\tan \delta = 3.44e-5$

Investigation of Brazing Method

- High temperature InCuSil-ABA @835°C in vacuum furnace
- Hermetic seal successful; ceramic became lossy
- Post-braze bake in air reduced RF loss
- Oxygen escapes in vacuum at high temperature but can be reintroduced

Choice of Brazing Method

 Low temperature solder (Au-Sn, 350°C) with silver-metallized disks chosen for Prototype I

– Metallization @ 850°C in air, preserved dielectric properties

- High temperature ABA (InCuSil, 850°C) with nude disks chosen for Prototype II
 - Leaked after first braze cycle
 - Second braze cycle improved leak
 - Third braze cycle cracked ceramic disks

Brazed Prototype Fabrication

Brazed Prototype RF Design

- 1 Dielectric cell (2 disks) + 2 matching cells
- f = 11.7 GHz, three sets of 4 tuners each allow
 ±3 MHz range

Dielectric constant	50.1
Loss tangent	8e-5
Q	10,300
Shunt impedance	176 MΩ/m
Group velocity	0.345c
Phase advance	2π/3
E _{acc} (P _{in})	100 MV/m (280 MW)
E _{max} / E _{acc}	1.84

Brazed Prototype Bench Test

- Measured $S_{21} = -0.50 \text{ dB} \& S_{11} 10 \text{ dB} BW = 290 \text{ MHz}$
- Differences attributable to discrepancies in machined dimensions/dielectric constant
 - Couplers included in simulation
- No tuning required

High Power Test Setup

- Power provided by Power Extraction and Transport Structure (PETS)
- ICTs measure beam current for power generation
- Directional couplers at DDA input & output
- Instrumentation to look for multipacting/breakdown
 - Ion pump & vacuum gauge
 - Cameras on both ends of DDA

12

Brazed Prototype High Power Test Results

- Significant multipactor/breakdown activity observed
- Light emission from circumference of both ceramic disks
 - No light visible from irises
- Conditioning improved power transmission & light emission somewhat; never eliminated
- Run aborted at 80 MW input power

Brazed Prototype Autopsy

- Damage around ceramic circumference
- SEM & EDX results reveal pitting and presence of gold (braze alloy) and copper near outer radius of disks
- Iris & surrounding area free from damage or contamination
- Breakdown/ multipactor confined to triple junction region

Brazed Prototype Conclusions

- Finer mesh revealed field enhancement at triple junction
- No evidence of problems stemming from iris or ceramic material
- Engineering challenge to overcome, not fundamental

Clamped Prototype RF Design

- Triple junction redesigned to minimize E-field
- Elliptic rounding added to copper and ceramic

4000 3000

1000

47.7
3.4e-5
8,500
174 MΩ/m
0.27c
2π/3
100 MV/m
1.44

start

14

(b)

(c)

elliptical rounding

area with

copper

vacuum

Dielectric

Clamped Prototype Fabrication

- Potential problem associated with braze alloy avoided
- No vacuum seal (tested in vacuum chamber)
- Outer edge of ceramic disks bite into annealed copper parts
- Ceramic design more difficult to machine

Clamped Prototype Bench Test

- Measured $S_{21} = -0.652 \text{ dB } \&$ $S_{11} \text{ 10 dB } BW = >640 \text{ MHz}$
- Differences attributable to discrepancies in machined dimensions/dielectric constant
 - Couplers included in simulation
- No tuning required

Clamped Prototype High Power Test History

- > 250k RF pulses delivered at 2 Hz rep. rate over 8 days
 - > 9k pulses recorded
- Vacuum & light monitored for multipacting/breakdown
- Input power increased once vacuum settled down & became steady
- Last data points = attempts to adjust laser for larger drive beam bunch charge

Clamped Prototype High Power Test Results

- No evidence (RF or light) of breakdown or multipacting
- Brief period of faint light from interior of structure at highest power conditioned away
- Transmitted power agrees very well with measured transmission loss from DDA+waveguide
- Limited by available input power!

Clamped Prototype Inspection

- No damage on ceramic or copper in RF volume
- Damage on copper surface and ceramic circumference in one cell due to RF leakage caused by inconsistent clamping force
 - May have been source of brief light during high power test

11.7GHz Multicell DDA

Parameter	Value	Paran
Disk Outer Diameter	$20.48~\mathrm{mm}$	Accele
Disk Inner Diameter	$2.239~\mathrm{mm}$	Group
Matching Cell Iris Aperture Diameter	$18.4 \mathrm{~mm}$	
Matching Cell Aperture Diameter	$22.86~\mathrm{mm}$	Quality
Disk Thickness	$1.45 \mathrm{~mm}$	r
Dielectric Cell Length	$8.541 \mathrm{~mm}$	r/Q
Number of Ceramics	7	S11 10

Parameter	Value
Accelerating Gradient at 400 MW	108 MV/m
Group Velocity	0.24 c
Quality Factor	9,612
r	184.4 M Ω/m
r/Q	19.2 kΩ/m
S11 10 dB Bandwidth	> 600 MHz

Engineering and Fabrication

- Due to clamping issues from single cell, more sophisticated clamping mechanism was designed.
- Compact enough to fit into vacuum chamber.
- Copper is annealed so that the ceramic can bite into it.

Bench Test

High Power RF Test (started on May 15 2023)

<u>Remarks</u>

- DDA shows an excellent properties in the role of short pulse acceleration.
- Triple junction design and implementation (clamp or braze) are key factors.
- No multipactor? To be reproduced.
- Breakdown limit to be explored.

Acknowledgements

- Collaborators
 - Scott Doran, Chunguang Jing, Maomoa Peng, John Power, Scott Ross, Jiahang Shao, Linda Spentzouris, Sarah Weatherly, Charles Whiteford, Eric Wisniewski

- Center for Nanoscale Materials
- Funding Agencies
 - DE-SC0019864
 - DE-AC02-06CH11357

